Sort by:
Page 1 of 110 results

The eyelid and pupil dynamics underlying stress levels in awake mice.

Zeng, H.

biorxiv logopreprintAug 10 2025
Stress is a natural response of the body to perceived threats, and it can have both positive and negative effects on brain hemodynamics. Stress-induced changes in pupil and eyelid size/shape have been used as a biomarker in several fMRI studies. However, there were limited knowledges regarding changes in behavior of pupil and eyelid dynamics, particularly on animal models. In the present study, the pupil and eyelid dynamics were carefully investigated and characterized in a newly developed awake rodent fMRI protocol. Leveraging deep learning techniques, the mouse pupil and eyelid diameters were extracted and analyzed during different training and imaging phases in the present project. Our findings demonstrate a consistent downwards trend in pupil and eyelid dynamics under a meticulously designed training protocol, suggesting that the behaviors of the pupil and eyelid can be served as reliable indicators of stress levels and motion artifacts in awake fMRI studies. The current recording platform not only enables the facilitation of awake animal MRI studies but also highlights its potential applications to numerous other research areas, owing to the non-invasive nature and straightforward implementation.

UltimateSynth: MRI Physics for Pan-Contrast AI

Adams, R., Huynh, K. M., Zhao, W., Hu, S., Lyu, W., Ahmad, S., Ma, D., Yap, P.-T.

biorxiv logopreprintAug 7 2025
Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific types of MRI and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of AI models that can robustly process and analyze the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan sequences, and age groups. Core to our framework is UltimateSynth, a technology that combines tissue physiology and MR physics in synthesizing realistic images across a comprehensive range of meaningful contrasts. This pan-contrast capability bolsters the AI development life cycle through efficient data labeling, generalizable model training, and thorough performance benchmarking. We showcase the effectiveness of UltimateSynth by training an off-the-shelf U-Net to generalize anatomical segmentation across any MR contrast. The U-Net yields highly robust tissue volume estimates, with variability under 4% across 150,000 unique-contrast images, 3.8% across 2,000+ low-field 0.3T scans, and 3.5% across 8,000+ images spanning the human lifespan from ages 0 to 100.

Modeling differences in neurodevelopmental maturity of the reading network using support vector regression on functional connectivity data

Lasnick, O. H. M., Luo, J., Kinnie, B., Kamal, S., Low, S., Marrouch, N., Hoeft, F.

biorxiv logopreprintAug 5 2025
The construction of growth charts trained to predict age or developmental deviation (the brain-age index) based on structural/functional properties of the brain may be informative of childrens neurodevelopmental trajectories. When applied to both typically and atypically developing populations, results may indicate that a particular condition is associated with atypical maturation of certain brain networks. Here, we focus on the relationship between reading disorder (RD) and maturation of functional connectivity (FC) patterns in the prototypical reading/language network using a cross-sectional sample of N = 742 participants aged 6-21 years. A support vector regression model is trained to predict chronological age from FC data derived from a whole-brain model as well as multiple reduced models, which are trained on FC data generated from a successively smaller number of regions in the brains reading network. We hypothesized that the trained models would show systematic underestimation of brain network maturity for poor readers, particularly for the models trained with reading/language regions. Comparisons of the different models predictions revealed that while the whole-brain model outperforms the others in terms of overall prediction accuracy, all models successfully predicted brain maturity, including the one trained with the smallest amount of FC data. In addition, all models showed that reading ability affected the brain-age gap, with poor readers ages being underestimated and advanced readers ages being overestimated. Exploratory results demonstrated that the most important regions and connections for prediction were derived from the default mode and frontoparietal control networks. GlossaryDevelopmental dyslexia / reading disorder (RD): A specific learning disorder affecting reading ability in the absence of any other explanatory condition such as intellectual disability or visual impairment Support vector regression (SVR): A supervised machine learning technique which predicts continuous outcomes (such as chronological age) rather than classifying each observation; finds the best-fit function within a defined error margin Principal component analysis (PCA): A dimensionality reduction technique that transforms a high-dimensional dataset with many features per observation into a reduced set of principal components for each observation; each component is a linear combination of several original (correlated) features, and the final set of components are all orthogonal (uncorrelated) to one another Brain-age index: A numerical index quantifying deviation from the brains typical developmental trajectory for a single individual; may be based on a variety of morphometric or functional properties of the brain, resulting in different estimates for the same participant depending on the imaging modality used Brain-age gap (BAG): The difference, given in units of time, between a participants true chronological age and a predictive models estimated age for that participant based on brain data (Actual - Predicted); may be used as a brain-age index HighlightsO_LIA machine learning model trained on functional data predicted participants ages C_LIO_LIThe model showed variability in age prediction accuracy based on reading skills C_LIO_LIThe model highly weighted data from frontoparietal and default mode regions C_LIO_LINeural markers of reading and language are diffusely represented in the brain C_LI

Brainwide hemodynamics predict EEG neural rhythms across sleep and wakefulness in humans

Jacob, L. P. L., Bailes, S. M., Williams, S. D., Stringer, C., Lewis, L. D.

biorxiv logopreprintJul 26 2025
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the widespread brain dynamics underlying these oscillations are difficult to investigate. Using simultaneous EEG and fast fMRI in humans who fell asleep inside the scanner, we developed a machine learning approach to investigate which fMRI regions and networks predict fluctuations in neural rhythms. We demonstrated that the rise and fall of alpha (8-12 Hz) and delta (1-4 Hz) power, two canonical EEG bands critically involved with cognition and vigilance, can be predicted from fMRI data in subjects that were not present in the training set. This approach also identified predictive information in individual brain regions across the cortex and subcortex. Finally, we developed an approach to identify shared and unique predictive information, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale primarily across the cortex. These results demonstrate that EEG rhythms can be predicted from fMRI data, identify large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal brain dynamics.

Multi-task machine learning reveals the functional neuroanatomy fingerprint of mental processing

Wang, Z., Chen, Y., Pan, Y., Yan, J., Mao, W., Xiao, Z., Cao, G., Toussaint, P.-J., Guo, W., Zhao, B., Sun, H., Zhang, T., Evans, A. C., Jiang, X.

biorxiv logopreprintJul 3 2025
Mental processing delineates the functions of human mind encompassing a wide range of motor, sensory, emotional, and cognitive processes, each of which is underlain by the neuroanatomical substrates. Identifying accurate representation of functional neuroanatomy substrates of mental processing could inform understanding of its neural mechanism. The challenge is that it is unclear whether a specific mental process possesses a 'functional neuroanatomy fingerprint', i.e., a unique and reliable pattern of functional neuroanatomy that underlies the mental process. To address this question, we utilized a multi-task deep learning model to disentangle the functional neuroanatomy fingerprint of seven different and representative mental processes including Emotion, Gambling, Language, Motor, Relational, Social, and Working Memory. Results based on the functional magnetic resonance imaging data of two independent cohorts of 1235 subjects from the US and China consistently show that each of the seven mental processes possessed a functional neuroanatomy fingerprint, which is represented by a unique set of functional activity weights of whole-brain regions characterizing the degree of each region involved in the mental process. The functional neuroanatomy fingerprint of a specific mental process exhibits high discrimination ability (93% classification accuracy and AUC of 0.99) with those of the other mental processes, and is robust across different datasets and using different brain atlases. This study provides a solid functional neuroanatomy foundation for investigating the neural mechanism of mental processing.

Default Mode Network Connectivity Predicts Individual Differences in Long-Term Forgetting: Evidence for Storage Degradation, not Retrieval Failure

Xu, Y., Prat, C. S., Sense, F., van Rijn, H., Stocco, A.

biorxiv logopreprintJun 16 2025
Despite the importance of memories in everyday life and the progress made in understanding how they are encoded and retrieved, the neural processes by which declarative memories are maintained or forgotten remain elusive. Part of the problem is that it is empirically difficult to measure the rate at which memories fade, even between repeated presentations of the source of the memory. Without such a ground-truth measure, it is hard to identify the corresponding neural correlates. This study addresses this problem by comparing individual patterns of functional connectivity against behavioral differences in forgetting speed derived from computational phenotyping. Specifically, the individual-specific values of the speed of forgetting in long-term memory (LTM) were estimated for 33 participants using a formal model fit to accuracy and response time data from an adaptive paired-associate learning task. Individual speeds of forgetting were then used to examine participant-specific patterns of resting-state fMRI connectivity, using machine learning techniques to identify the most predictive and generalizable features. Our results show that individual speeds of forgetting are associated with resting-state connectivity within the default mode network (DMN) as well as between the DMN and cortical sensory areas. Cross-validation showed that individual speeds of forgetting were predicted with high accuracy (r = .78) from these connectivity patterns alone. These results support the view that DMN activity and the associated sensory regions are actively involved in maintaining memories and preventing their decline, a view that can be seen as evidence for the hypothesis that forgetting is a result of storage degradation, rather than of retrieval failure.

CAN TRANSFER LEARNING IMPROVE SUPERVISED SEGMENTATIONOF WHITE MATTER BUNDLES IN GLIOMA PATIENTS?

Riccardi, C., Ghezzi, S., Amorosino, G., Zigiotto, L., Sarubbo, S., Jovicich, J., Avesani, P.

biorxiv logopreprintJun 6 2025
In clinical neuroscience, the segmentation of the main white matter bundles is propaedeutic for many tasks such as pre-operative neurosurgical planning and monitoring of neuro-related diseases. Automating bundle segmentation with data-driven approaches and deep learning models has shown promising accuracy in the context of healthy individuals. The lack of large clinical datasets is preventing the translation of these results to patients. Inference on patients data with models trained on healthy population is not effective because of domain shift. This study aims to carry out an empirical analysis to investigate how transfer learning might be beneficial to overcome these limitations. For our analysis, we consider a public dataset with hundreds of individuals and a clinical dataset of glioma patients. We focus our preliminary investigation on the corticospinal tract. The results show that transfer learning might be effective in partially overcoming the domain shift.

Fed-ComBat: A Generalized Federated Framework for Batch Effect Harmonization in Collaborative Studies

Silva, S., Lorenzi, M., Altmann, A., Oxtoby, N.

biorxiv logopreprintMay 14 2025
In neuroimaging research, the utilization of multi-centric analyses is crucial for obtaining sufficient sample sizes and representative clinical populations. Data harmonization techniques are typically part of the pipeline in multi-centric studies to address systematic biases and ensure the comparability of the data. However, most multi-centric studies require centralized data, which may result in exposing individual patient information. This poses a significant challenge in data governance, leading to the implementation of regulations such as the GDPR and the CCPA, which attempt to address these concerns but also hinder data access for researchers. Federated learning offers a privacy-preserving alternative approach in machine learning, enabling models to be collaboratively trained on decentralized data without the need for data centralization or sharing. In this paper, we present Fed-ComBat, a federated framework for batch effect harmonization on decentralized data. Fed-ComBat extends existing centralized linear methods, such as ComBat and distributed as d-ComBat, and nonlinear approaches like ComBat-GAM in accounting for potentially nonlinear and multivariate covariate effects. By doing so, Fed-ComBat enables the preservation of nonlinear covariate effects without requiring centralization of data and without prior knowledge of which variables should be considered nonlinear or their interactions, differentiating it from ComBat-GAM. We assessed Fed-ComBat and existing approaches on simulated data and multiple cohorts comprising healthy controls (CN) and subjects with various disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD). The results of our study show that Fed-ComBat performs better than centralized ComBat when dealing with nonlinear effects and is on par with centralized methods like ComBat-GAM. Through experiments using synthetic data, Fed-ComBat demonstrates a superior ability to reconstruct the target unbiased function, achieving a 35% improvement (RMSE=0.5952) compared to d-ComBat (RMSE=0.9162) and a 12% improvement compared to our proposal to federate ComBat-GAM, d-ComBat-GAM (RMSE=0.6751). Additionally, Fed-ComBat achieves comparable results to centralized methods like ComBat-GAM for MRI-derived phenotypes without requiring prior knowledge of potential nonlinearities.

AmygdalaGo-BOLT: an open and reliable AI tool to trace boundaries of human amygdala

Zhou, Q., Dong, B., Gao, P., Jintao, W., Xiao, J., Wang, W., Liang, P., Lin, D., Zuo, X.-N., He, H.

biorxiv logopreprintMay 13 2025
Each year, thousands of brain MRI scans are collected to study structural development in children and adolescents. However, the amygdala, a particularly small and complex structure, remains difficult to segment reliably, especially in developing populations where its volume is even smaller. To address this challenge, we developed AmygdalaGo-BOLT, a boundary-aware deep learning model tailored for human amygdala segmentation. It was trained and validated using 854 manually labeled scans from pediatric datasets, with independent samples used to ensure performance generalizability. The model integrates multiscale image features, spatial priors, and self-attention mechanisms within a compact encoder-decoder architecture to enhance boundary detection. Validation across multiple imaging centers and age groups shows that AmygdalaGo-BOLT closely matches expert manual labels, improves processing efficiency, and outperforms existing tools in accuracy. This enables robust and scalable analysis of amygdala morphology in developmental neuroimaging studies where manual tracing is impractical. To support open and reproducible science, we publicly release both the labeled datasets and the full source code.

Altered intrinsic ignition dynamics linked to Amyloid-β and tau pathology in Alzheimer's disease

Patow, G. A., Escrichs, A., Martinez-Molina, N., Ritter, P., Deco, G.

biorxiv logopreprintMay 11 2025
Alzheimer's disease (AD) progressively alters brain structure and function, yet the associated changes in large-scale brain network dynamics remain poorly understood. We applied the intrinsic ignition framework to resting-state functional MRI (rs-fMRI) data from AD patients, individuals with mild cognitive impairment (MCI), and cognitively healthy controls (HC) to elucidate how AD shapes intrinsic brain activity. We assessed node-metastability at the whole-brain level and in 7 canonical resting-state networks (RSNs). Our results revealed a progressive decline in dynamical complexity across the disease continuum. HC exhibited the highest node-metastability, whereas it was substantially reduced in MCI and AD patients. The cortical hierarchy of information processing was also disrupted, indicating that rich-club hubs may be selectively affected in AD progression. Furthermore, we used linear mixed-effects models to evaluate the influence of Amyloid-{beta} (A{beta}) and tau pathology on brain dynamics at both regional and whole-brain levels. We found significant associations between both protein burdens and alterations in node metastability. Lastly, a machine learning classifier trained on brain dynamics, A{beta}, and tau burden features achieved high accuracy in discriminating between disease stages. Together, our findings highlight the progressive disruption of intrinsic ignition across whole-brain and RSNs in AD and support the use of node-metastability in conjunction with proteinopathy as a novel framework for tracking disease progression.
Page 1 of 110 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.