Sort by:
Page 94 of 99986 results

Technology Advances in the placement of naso-enteral tubes and in the management of enteral feeding in critically ill patients: a narrative study.

Singer P, Setton E

pubmed logopapersMay 16 2025
Enteral feeding needs secure access to the upper gastrointestinal tract, an evaluation of the gastric function to detect gastrointestinal intolerance, and a nutritional target to reach the patient's needs. Only in the last decades has progress been accomplished in techniques allowing an appropriate placement of the nasogastric tube, mainly reducing pulmonary complications. These techniques include point-of-care ultrasound (POCUS), electromagnetic sensors, real-time video-assisted placement, impedance sensors, and virtual reality. Again, POCUS is the most accessible tool available to evaluate gastric emptying, with antrum echo density measurement. Automatic measurements of gastric antrum content supported by deep learning algorithms and electric impedance provide gastric volume. Intragastric balloons can evaluate motility. Finally, advanced technologies have been tested to improve nutritional intake: Stimulation of the esophagus mucosa inducing contraction mimicking a contraction wave that may improve enteral nutrition efficacy, impedance sensors to detect gastric reflux and modulate the rate of feeding accordingly have been clinically evaluated. Use of electronic health records integrating nutritional needs, target, and administration is recommended.

Evaluation of tumour pseudocapsule using computed tomography-based radiomics in pancreatic neuroendocrine tumours to predict prognosis and guide surgical strategy: a cohort study.

Wang Y, Gu W, Huang D, Zhang W, Chen Y, Xu J, Li Z, Zhou C, Chen J, Xu X, Tang W, Yu X, Ji S

pubmed logopapersMay 16 2025
To date, indications for a surgical approach of small pancreatic neuroendocrine tumours (PanNETs) remain controversial. This cohort study aimed to identify the pseudocapsule status preoperatively to estimate the rationality of enucleation and survival prognosis of PanNETs, particularly in small tumours. Clinicopathological data were collected from patients with PanNETs who underwent the first pancreatectomy at our hospital (n = 578) between February 2012 and September 2023. Kaplan-Meier curves were constructed to visualise prognostic differences. Five distinct tissue samples were obtained for single-cell RNA sequencing (scRNA-seq) to evaluate variations in the tumour microenvironment. Radiological features were extracted from preoperative arterial-phase contrast-enhanced computed tomography. The performance of the pseudocapsule radiomics model was assessed using the area under the curve (AUC) metric. 475 cases (mean [SD] age, 53.01 [12.20] years; female vs male, 1.24:1) were eligible for this study. The mean pathological diameter of tumour was 2.99 cm (median: 2.50 cm; interquartile range [IQR]: 1.50-4.00 cm). These cases were stratified into complete (223, 46.95%) and incomplete (252, 53.05%) pseudocapsule groups. A statistically significant difference in aggressive indicators was observed between the two groups (P < 0.001). Through scRNA-seq analysis, we identified that the incomplete group presented a markedly immunosuppressive microenvironment. Regarding the impact on recurrence-free survival, the 3-year and 5-year rates were 94.8% and 92.5%, respectively, for the complete pseudocapsule group, compared to 76.7% and 70.4% for the incomplete pseudocapsule group. The radiomics-predictive model has a significant discrimination for the state of the pseudocapsule, particularly in small tumours (AUC, 0.744; 95% CI, 0.652-0.837). By combining computed tomography-based radiomics and machine learning for preoperative identification of pseudocapsule status, the intact group is more likely to benefit from enucleation.

A computed tomography-based radiomics prediction model for BRAF mutation status in colorectal cancer.

Zhou B, Tan H, Wang Y, Huang B, Wang Z, Zhang S, Zhu X, Wang Z, Zhou J, Cao Y

pubmed logopapersMay 15 2025
The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients. In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity. Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667. A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.

Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer.

Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X

pubmed logopapersMay 15 2025
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.

A Deep-Learning Framework for Ovarian Cancer Subtype Classification Using Whole Slide Images.

Wang C, Yi Q, Aflakian A, Ye J, Arvanitis T, Dearn KD, Hajiyavand A

pubmed logopapersMay 15 2025
Ovarian cancer, a leading cause of cancer-related deaths among women, comprises distinct subtypes each requiring different treatment approaches. This paper presents a deep-learning framework for classifying ovarian cancer subtypes using Whole Slide Imaging (WSI). Our method contains three stages: image tiling, feature extraction, and multi-instance learning. Our approach is trained and validated on a public dataset from 80 distinct patients, achieving up to 89,8% accuracy with a notable improvement in computational efficiency. The results demonstrate the potential of our framework to augment diagnostic precision in clinical settings, offering a scalable solution for the accurate classification of ovarian cancer subtypes.

A monocular endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network.

Chong N, Yang F, Wei K

pubmed logopapersMay 15 2025
Minimally invasive surgery involves entering the body through small incisions or natural orifices, using a medical endoscope for observation and clinical procedures. However, traditional endoscopic images often suffer from low texture and uneven illumination, which can negatively impact surgical and diagnostic outcomes. To address these challenges, many researchers have applied deep learning methods to enhance the processing of endoscopic images. This paper proposes a monocular medical endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network. In this network, one branch focuses on processing global image information, while the other branch concentrates on local details. An improved lightweight Squeeze-and-Excitation (SE) module is added to the final layer of each branch, dynamically adjusting the inter-channel weights through self-attention. The outputs from both branches are then integrated using a lightweight cross-attention feature fusion module, enabling cross-branch feature interaction and enhancing the overall feature representation capability of the network. Extensive ablation and comparative experiments were conducted on medical datasets (EAD2019, Hamlyn, M2caiSeg, UCL) and a non-medical dataset (NYUDepthV2), with both qualitative and quantitative results-measured in terms of RMSE, AbsRel, FLOPs and running time-demonstrating the superiority of the proposed model. Additionally, comparisons with CT images show good organ boundary matching capability, highlighting the potential of our method for clinical applications. The key code of this paper is available at: https://github.com/superchongcnn/AttenAdapt_DE .

Automated high precision PCOS detection through a segment anything model on super resolution ultrasound ovary images.

Reka S, Praba TS, Prasanna M, Reddy VNN, Amirtharajan R

pubmed logopapersMay 15 2025
PCOS (Poly-Cystic Ovary Syndrome) is a multifaceted disorder that often affects the ovarian morphology of women of their reproductive age, resulting in the development of numerous cysts on the ovaries. Ultrasound imaging typically diagnoses PCOS, which helps clinicians assess the size, shape, and existence of cysts in the ovaries. Nevertheless, manual ultrasound image analysis is often challenging and time-consuming, resulting in inter-observer variability. To effectively treat PCOS and prevent its long-term effects, prompt and accurate diagnosis is crucial. In such cases, a prediction model based on deep learning can help physicians by streamlining the diagnosis procedure, reducing time and potential errors. This article proposes a novel integrated approach, QEI-SAM (Quality Enhanced Image - Segment Anything Model), for enhancing image quality and ovarian cyst segmentation for accurate prediction. GAN (Generative Adversarial Networks) and CNN (Convolutional Neural Networks) are the most recent cutting-edge innovations that have supported the system in attaining the expected result. The proposed QEI-SAM model used Enhanced Super Resolution Generative Adversarial Networks (ESRGAN) for image enhancement to increase the resolution, sharpening the edges and restoring the finer structure of the ultrasound ovary images and achieved a better SSIM of 0.938, PSNR value of 38.60 and LPIPS value of 0.0859. Then, it incorporates the Segment Anything Model (SAM) to segment ovarian cysts and achieve the highest Dice coefficient of 0.9501 and IoU score of 0.9050. Furthermore, Convolutional Neural Network - ResNet 50, ResNet 101, VGG 16, VGG 19, AlexNet and Inception v3 have been implemented to diagnose PCOS promptly. Finally, VGG 19 has achieved the highest accuracy of 99.31%.

Recent advancements in personalized management of prostate cancer biochemical recurrence after radical prostatectomy.

Falkenbach F, Ekrutt J, Maurer T

pubmed logopapersMay 15 2025
Biochemical recurrence (BCR) after radical prostatectomy exhibits heterogeneous prognostic implications. Recent advancements in imaging and biomarkers have high potential for personalizing care. Prostate-specific membrane antigen imaging (PSMA)-PET/CT has revolutionized the BCR management in prostate cancer by detecting microscopic lesions earlier than conventional staging, leading to improved cancer control outcomes and changes in treatment plans in approximately two-thirds of cases. Salvage radiotherapy, often combined with androgen deprivation therapy, remains the standard treatment for high-risk BCR postprostatectomy, with PSMA-PET/CT guiding treatment adjustments, such as the radiation field, and improving progression-free survival. Advancements in biomarkers, genomic classifiers, and artificial intelligence-based models have enhanced risk stratification and personalized treatment planning, resulting in both treatment intensification and de-escalation. While conventional risk grouping relying on Gleason score and PSA level and kinetics remain the foundation for BCR management, PSMA-PET/CT, novel biomarkers, and artificial intelligence may enable more personalized treatment strategies.

Predicting Immunotherapy Response in Unresectable Hepatocellular Carcinoma: A Comparative Study of Large Language Models and Human Experts.

Xu J, Wang J, Li J, Zhu Z, Fu X, Cai W, Song R, Wang T, Li H

pubmed logopapersMay 15 2025
Hepatocellular carcinoma (HCC) is an aggressive cancer with limited biomarkers for predicting immunotherapy response. Recent advancements in large language models (LLMs) like GPT-4, GPT-4o, and Gemini offer the potential for enhancing clinical decision-making through multimodal data analysis. However, their effectiveness in predicting immunotherapy response, especially compared to human experts, remains unclear. This study assessed the performance of GPT-4, GPT-4o, and Gemini in predicting immunotherapy response in unresectable HCC, compared to radiologists and oncologists of varying expertise. A retrospective analysis of 186 patients with unresectable HCC utilized multimodal data (clinical and CT images). LLMs were evaluated with zero-shot prompting and two strategies: the 'voting method' and the 'OR rule method' for improved sensitivity. Performance metrics included accuracy, sensitivity, area under the curve (AUC), and agreement across LLMs and physicians.GPT-4o, using the 'OR rule method,' achieved 65% accuracy and 47% sensitivity, comparable to intermediate physicians but lower than senior physicians (accuracy: 72%, p = 0.045; sensitivity: 70%, p < 0.0001). Gemini-GPT, combining GPT-4, GPT-4o, and Gemini, achieved an AUC of 0.69, similar to senior physicians (AUC: 0.72, p = 0.35), with 68% accuracy, outperforming junior and intermediate physicians while remaining comparable to senior physicians (p = 0.78). However, its sensitivity (58%) was lower than senior physicians (p = 0.0097). LLMs demonstrated higher inter-model agreement (κ = 0.59-0.70) than inter-physician agreement, especially among junior physicians (κ = 0.15). This study highlights the potential of LLMs, particularly Gemini-GPT, as valuable tools in predicting immunotherapy response for HCC.
Page 94 of 99986 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.