Sort by:
Page 94 of 1291287 results

Feasibility study of a general model for synthetic CT generation in MRI-guided extracranial radiotherapy.

Hsu SH, Han Z, Hu YH, Ferguson D, van Dams R, Mak RH, Leeman JE, Sudhyadhom A

pubmed logopapersMay 19 2025
This study aims to investigate the feasibility of a single general model to synthesize CT images across body sites, thorax, abdomen, and pelvis, to support treatment planning for MRI-only radiotherapy. A total of 157 patients who received MRI-guided radiation therapy in the thorax, abdomen, and pelvis on a 0.35T MRIdian Linac were included. A subset of 122 cases were used for model training and the remaining 35 cases were used for model validation. All patient datasets had semi-paired CT-simulation image and 0.35T MR image acquired using TrueFISP. A conditional generative adversarial network with a multi-planar method was used to generate synthetic CT images from 0.35T MR images. The effect of preprocessing methods (with and without bias field corrections) on the quality of synthetic CT was evaluated and found to be insignificant. The general models trained on all cases performed comparably to the site-specific models trained on individual body sites. For all models, the peak signal-to-noise ratios ranged from 31.7 to 34.9 and the structural index similarity measures ranged from 0.9547 to 0.9758. For the datasets with bias field corrections, the mean-absolute-errors in HU (general model versus site-specific model) were 49.7 ± 9.4 versus 49.5 ± 8.9, 48.7 ± 7.6 versus 43 ± 7.8 and 32.8 ± 5.5 versus 31.8 ± 5.3 for the thorax, abdomen, and pelvis, respectively. When comparing plans between synthetic CTs and ground truth CTs, the dosimetric difference was on average less than 0.5% (0.2 Gy) for target coverage and less than 2.1% (0.4 Gy) for organ-at-risk metrics for all body sites with either the general or specific models. Synthetic CT plans showed good agreement with mean gamma pass rates of >94% and >99% for 1%/1 mm and 2%/2 mm, respectively. This study has demonstrated the feasibility of using a general model for multiple body sites and the potential of using synthetic CT to support an MRI-guided radiotherapy workflow.

The Role of Machine Learning to Detect Occult Neck Lymph Node Metastases in Early-Stage (T1-T2/N0) Oral Cavity Carcinomas.

Troise S, Ugga L, Esposito M, Positano M, Elefante A, Capasso S, Cuocolo R, Merola R, Committeri U, Abbate V, Bonavolontà P, Nocini R, Dell'Aversana Orabona G

pubmed logopapersMay 19 2025
Oral cavity carcinomas (OCCs) represent roughly 50% of all head and neck cancers. The risk of occult neck metastases for early-stage OCCs ranges from 15% to 35%, hence the need to develop tools that can support the diagnosis of detecting these neck metastases. Machine learning and radiomic features are emerging as effective tools in this field. Thus, the aim of this study is to demonstrate the effectiveness of radiomic features to predict the risk of occult neck metastases in early-stage (T1-T2/N0) OCCs. Retrospective study. A single-institution analysis (Maxillo-facial Surgery Unit, University of Naples Federico II). A retrospective analysis was conducted on 75 patients surgically treated for early-stage OCC. For all patients, data regarding TNM, in particular pN status after the histopathological examination, have been obtained and the analysis of radiomic features from MRI has been extrapolated. 56 patients confirmed N0 status after surgery, while 19 resulted in pN+. The radiomic features, extracted by a machine-learning algorithm, exhibited the ability to preoperatively discriminate occult neck metastases with a sensitivity of 78%, specificity of 83%, an AUC of 86%, accuracy of 80%, and a positive predictive value (PPV) of 63%. Our results seem to confirm that radiomic features, extracted by machine learning methods, are effective tools in detecting occult neck metastases in early-stage OCCs. The clinical relevance of this study is that radiomics could be used routinely as a preoperative tool to support diagnosis and to help surgeons in the surgical decision-making process, particularly regarding surgical indications for neck lymph node treatment.

Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children.

Tsai ML, Hsieh KL, Liu YL, Yang YS, Chang H, Wong TT, Peng SJ

pubmed logopapersMay 19 2025
Understanding the impact of epilepsy on pediatric brain tumors is crucial to diagnostic precision and optimal treatment selection. This study investigated MRI radiomics features, tumor location, voxel-based morphometry (VBM) for gray matter density, and tumor volumetry to differentiate between children with low grade glioma (LGG)-associated epilepsies and those without, and further identified key radiomics features for predicting of epilepsy risk in children with supratentorial LGG to construct an epilepsy prediction model. A total of 206 radiomics features of tumors and voxel-based morphometric analysis of tumor location features were extracted from T2-FLAIR images in a primary cohort of 48 children with LGG with epilepsy (N = 23) or without epilepsy (N = 25), prior to surgery. Feature selection was performed using the minimum redundancy maximum relevance algorithm, and leave-one-out cross-validation was applied to assess the predictive performance of radiomics and tumor location signatures in differentiating epilepsy-associated LGG from non-epilepsy cases. Voxel-based morphometric analysis showed significant positive t-scores within bilateral temporal cortex and negative t-scores in basal ganglia between epilepsy and non-epilepsy groups. Eight radiomics features were identified as significant predictors of epilepsy in LGG, encompassing characteristics of 2 locations, 2 shapes, 1 image gray scale intensity, and 3 textures. The most important predictor was temporal lobe involvement, followed by high dependence high grey level emphasis, elongation, area density, information correlation 1, midbrain and intensity range. The Linear Support Vector Machine (SVM) model yielded the best prediction performance, when implemented with a combination of radiomics features and tumor location features, as evidenced by the following metrics: precision (0.955), recall (0.913), specificity (0.960), accuracy (0.938), F-1 score (0.933), and area under curve (AUC) (0.950). Our findings demonstrated the efficacy of machine learning models based on radiomics features and voxel-based anatomical locations in predicting the risk of epilepsy in supratentorial LGG. This model provides a highly accurate tool for distinguishing epilepsy-associated LGG in children, supporting precise treatment planning. Not applicable.

Diagnosis of early idiopathic pulmonary fibrosis: current status and future perspective.

Wang X, Xia X, Hou Y, Zhang H, Han W, Sun J, Li F

pubmed logopapersMay 19 2025
The standard approach to diagnosing idiopathic pulmonary fibrosis (IPF) includes identifying the usual interstitial pneumonia (UIP) pattern via high resolution computed tomography (HRCT) or lung biopsy and excluding known causes of interstitial lung disease (ILD). However, limitations of manual interpretation of lung imaging, along with other reasons such as lack of relevant knowledge and non-specific symptoms have hindered the timely diagnosis of IPF. This review proposes the definition of early IPF, emphasizes the diagnostic urgency of early IPF, and highlights current diagnostic strategies and future prospects for early IPF. The integration of artificial intelligence (AI), specifically machine learning (ML) and deep learning (DL), is revolutionizing the diagnostic procedure of early IPF by standardizing and accelerating the interpretation of thoracic images. Innovative bronchoscopic techniques such as transbronchial lung cryobiopsy (TBLC), genomic classifier, and endobronchial optical coherence tomography (EB-OCT) provide less invasive diagnostic alternatives. In addition, chest auscultation, serum biomarkers, and susceptibility genes are pivotal for the indication of early diagnosis. Ongoing research is essential for refining diagnostic methods and treatment strategies for early IPF.

Deep learning models based on multiparametric magnetic resonance imaging and clinical parameters for identifying synchronous liver metastases from rectal cancer.

Sun J, Wu PY, Shen F, Chen X, She J, Luo M, Feng F, Zheng D

pubmed logopapersMay 19 2025
To establish and validate deep learning (DL) models based on pre-treatment multiparametric magnetic resonance imaging (MRI) images of primary rectal cancer and basic clinical data for the prediction of synchronous liver metastases (SLM) in patients with Rectal cancer (RC). In this retrospective study, 176 and 31 patients with RC who underwent multiparametric MRI from two centers were enrolled in the primary and external validation cohorts, respectively. Clinical factors, including sex, primary tumor site, CEA level, and CA199 level were assessed. A clinical feature (CF) model was first developed by multivariate logistic regression, then two residual network DL models were constructed based on multiparametric MRI of primary cancer with or without CF incorporation. Finally, the SLM prediction models were validated by 5-fold cross-validation and external validation. The performance of the models was evaluated by decision curve analysis (DCA) and receiver operating characteristic (ROC) analysis. Among three SLM prediction models, the Combined DL model integrating primary tumor MRI and basic clinical data achieved the best performance (AUC = 0.887 in primary study cohort; AUC = 0.876 in the external validation cohort). In the primary study cohort, the CF model, MRI DL model, and Combined DL model achieved AUCs of 0.816 (95% CI: 0.750, 0.881), 0.788 (95% CI: 0.720, 0.857), and 0.887 (95% CI: 0.834, 0.940) respectively. In the external validation cohort, the CF model, DL model without CF, and DL model with CF achieved AUCs of 0.824 (95% CI: 0.664, 0.984), 0.662 (95% CI: 0.461, 0.863), and 0.876 (95% CI: 0.728, 1.000), respectively. The combined DL model demonstrates promising potential to predict SLM in patients with RC, thereby making individualized imaging test strategies. Accurate synchronous liver metastasis (SLM) risk stratification is important for treatment planning and prognosis improvement. The proposed DL signature may be employed to better understand an individual patient's SLM risk, aiding in treatment planning and selection of further imaging examinations to personalize clinical decisions. Not applicable.

Prediction of prognosis of immune checkpoint inhibitors combined with anti-angiogenic agents for unresectable hepatocellular carcinoma by machine learning-based radiomics.

Xu X, Jiang X, Jiang H, Yuan X, Zhao M, Wang Y, Chen G, Li G, Duan Y

pubmed logopapersMay 19 2025
This study aims to develop and validate a novel radiomics model utilizing magnetic resonance imaging (MRI) to predict progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) who are receiving a combination of immune checkpoint inhibitors (ICIs) and antiangiogenic agents. This is an area that has not been previously explored using MRI-based radiomics. 111 patients with uHCC were enrolled in this study. After performing univariate cox regression and the least absolute shrinkage and selection operator (LASSO) algorithms to extract radiological features, the Rad-score was calculated through a Cox proportional hazards regression model and a random survival forest (RSF) model. The optimal calculation method was selected by comparing the Harrell's concordance index (C-index) values. The Rad-score was then combined with independent clinical risk factors to create a nomogram. C-index, time-dependent receiver operating characteristics (ROC) curves, calibration curves, and decision curve analysis were employed to assess the forecast ability of the risk models. The combined nomogram incorporated independent clinical factors and Rad-score calculated by RSF demonstrated better prognosis prediction for PFS, with C-index of 0.846, 0.845, separately in the training and the validation cohorts. This indicates that our model performs well and has the potential to enable more precise patient stratification and personalized treatment strategies. Based on the risk level, the participants were classified into two distinct groups: the high-risk signature (HRS) group and the low-risk signature (LRS) group, with a significant difference between the groups (P < 0.01). The effective clinical-radiomics nomogram based on MRI imaging is a promising tool in predicting the prognosis in uHCC patients receiving ICIs combined with anti-angiogenic agents, potentially leading to more effective clinical outcomes.

Multiple deep learning models based on MRI images in discriminating glioblastoma from solitary brain metastases: a multicentre study.

Kong C, Yan D, Liu K, Yin Y, Ma C

pubmed logopapersMay 19 2025
Development of a deep learning model for accurate preoperative identification of glioblastoma and solitary brain metastases by combining multi-centre and multi-sequence magnetic resonance images and comparison of the performance of different deep learning models. Clinical data and MR images of a total of 236 patients with pathologically confirmed glioblastoma and single brain metastases were retrospectively collected from January 2019 to May 2024 at Provincial Hospital of Shandong First Medical University, and the data were randomly divided into a training set and a test set according to the ratio of 8:2, in which the training set contained 197 cases and the test set contained 39 cases; the images were preprocessed and labeled with the tumor regions. The images were pre-processed and labeled with tumor regions, and different MRI sequences were input individually or in combination to train the deep learning model 3D ResNet-18, and the optimal sequence combinations were obtained by five-fold cross-validation enhancement of the data inputs and training of the deep learning models 3D Vision Transformer (3D Vit), 3D DenseNet, and 3D VGG; the working characteristic curves (ROCs) of subjects were plotted, and the area under the curve (AUC) was calculated. The area under the curve (AUC), accuracy, precision, recall and F1 score were used to evaluate the discriminative performance of the models. In addition, 48 patients with glioblastoma and single brain metastases from January 2020 to December 2022 were collected from the Affiliated Cancer Hospital of Shandong First Medical University as an external test set to compare the discriminative performance, robustness and generalization ability of the four deep learning models. In the comparison of the discriminative effect of different MRI sequences, the three sequence combinations of T1-CE, T2, and T2-Flair gained discriminative effect, with the accuracy and AUC values of 0.8718 and 0.9305, respectively; after the four deep learning models were inputted into the aforementioned sequence combinations, the accuracy and AUC of the external validation of the 3D ResNet-18 model were 0.8125, respectively, 0.8899, all of which are the highest among all models. A combination of multi-sequence MR images and a deep learning model can efficiently identify glioblastoma and solitary brain metastases preoperatively, and the deep learning model 3D ResNet-18 has the highest efficacy in identifying the two types of tumours.

Detection of carotid artery calcifications using artificial intelligence in dental radiographs: a systematic review and meta-analysis.

Arzani S, Soltani P, Karimi A, Yazdi M, Ayoub A, Khurshid Z, Galderisi D, Devlin H

pubmed logopapersMay 19 2025
Carotid artery calcifications are important markers of cardiovascular health, often associated with atherosclerosis and a higher risk of stroke. Recent research shows that dental radiographs can help identify these calcifications, allowing for earlier detection of vascular diseases. Advances in artificial intelligence (AI) have improved the ability to detect carotid calcifications in dental images, making it a useful screening tool. This systematic review and meta-analysis aimed to evaluate how accurately AI methods can identify carotid calcifications in dental radiographs. A systematic search in databases including PubMed, Scopus, Embase, and Web of Science for studies on AI algorithms used to detect carotid calcifications in dental radiographs was conducted. Two independent reviewers collected data on study aims, imaging techniques, and statistical measures such as sensitivity and specificity. A meta-analysis using random effects was performed, and the risk of bias was evaluated with the QUADAS-2 tool. Nine studies were suitable for qualitative analysis, while five provided data for quantitative analysis. These studies assessed AI algorithms using cone beam computed tomography (n = 3) and panoramic radiographs (n = 6). The sensitivity of the included studies ranged from 0.67 to 0.98 and specificity varied between 0.85 and 0.99. The overall effect size, by considering only one AI method in each study, resulted in a sensitivity of 0.92 [95% CI 0.81 to 0.97] and a specificity of 0.96 [95% CI 0.92 to 0.97]. The high sensitivity and specificity indicate that AI methods could be effective screening tools, enhancing the early detection of stroke and related cardiovascular risks. Not applicable.

Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center study.

He S, Deng B, Chen J, Li J, Wang X, Li G, Long S, Wan J, Zhang Y

pubmed logopapersMay 19 2025
In the prognosis of breast cancer, the status of axillary lymph nodes (ALN) is critically important. While traditional axillary lymph node dissection (ALND) provides comprehensive information, it is associated with high risks. Sentinel lymph node biopsy (SLND), as an alternative, is less invasive but still poses a risk of overtreatment. In recent years, digital breast tomosynthesis (DBT) technology has emerged as a new precise diagnostic tool for breast cancer, leveraging its high detection capability for lesions obscured by dense glandular tissue. This multi-center study evaluates the feasibility of preoperative DBT-based radiomics, using tumor and peritumoral features, to predict ALN metastasis in breast cancer. We retrospectively collected DBT imaging data from 536 preoperative breast cancer patients across two centers. Specifically, 390 cases were from one Hospital, and 146 cases were from another Hospital. These data were assigned to internal training and external validation sets, respectively. We performed 3D region of interest (ROI) delineation on the cranio-caudal (CC) and mediolateral oblique (MLO) views of DBT images and extracted radiomic features. Using methods such as analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), we selected radiomic features extracted from the tumor and its surrounding 3 mm, 5 mm, and 10 mm regions, and constructed a radiomic feature set. We then developed a combined model that includes the optimal radiomic features and clinical pathological factors. The performance of the combined model was evaluated using the area under the curve (AUC), and it was directly compared with the diagnostic results of radiologists. The results showed that the AUC of the radiomic features from the surrounding regions of the tumor were generally lower than those from the tumor itself. Among them, the Signature<sub>tuomor+10 mm</sub> model performed best, achieving an AUC of 0.806 using a logistic regression (LR) classifier to generate the RadScore.The nomogram incorporating both Ki67 and RadScore demonstrated a slightly higher AUC (0.813) compared to the Signature<sub>tuomor+10 mm</sub> model alone (0.806). By integrating relevant clinical information, the nomogram enhances potential clinical utility. Moreover, it outperformed radiologists' assessments in predictive accuracy, highlighting its added value in clinical decision-making. Radiomics based on DBT imaging of the tumor and surrounding regions can provide a non-invasive auxiliary tool to guide treatment strategies for ALN metastasis in breast cancer. Not applicable.

Development and validation of ultrasound-based radiomics deep learning model to identify bone erosion in rheumatoid arthritis.

Yan L, Xu J, Ye X, Lin M, Gong Y, Fang Y, Chen S

pubmed logopapersMay 19 2025
To develop and validate a deep learning radiomics fusion model (DLR) based on ultrasound (US) images to identify bone erosion in rheumatoid arthritis (RA) patients. A total of 432 patients with RA at two institutions were collected. Three hundred twelve patients from center 1 were randomly divided into a training set (N = 218) and an internal test set (N = 94) in a 7:3 ratio; meanwhile, 124 patients from center 2 were as an external test set. Radiomics (Rad) and deep learning (DL) features were extracted based on hand-crafted radiomics and deep transfer learning networks. The least absolute shrinkage and selection operator regression was employed to establish DLR fusion feature from the Rad and DL features. Subsequently, 10 machine learning algorithms were used to construct models and the final optimal model was selected. The performance of models was evaluated using receiver operating characteristic (ROC) and decision curve analysis (DCA). The diagnostic efficacy of sonographers was compared with and without the assistance of the optimal model. LR was chosen as the optimal algorithm for model construction account for superior performance (Rad/DL/DLR: area under the curve [AUC] = 0.906/0.974/0.979) in the training set. In the internal test set, DLR_LR as the final model had the highest AUC (AUC = 0.966), which was also validated in the external test set (AUC = 0.932). With the aid of DLR_LR model, the overall performance of both junior and senior sonographers improved significantly (P < 0.05), and there was no significant difference between the junior sonographer with DLR_LR model assistance and the senior sonographer without assistance (P > 0.05). DLR model based on US images is the best performer and is expected to become an important tool for identifying bone erosion in RA patients. Key Points • DLR model based on US images is the best performer in identifying BE in RA patients. • DLR model may assist the sonographers to improve the accuracy of BE evaluations.
Page 94 of 1291287 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.