Back to all papers

Accuracy of large language models in generating differential diagnosis from clinical presentation and imaging findings in pediatric cases.

Authors

Jung J,Phillipi M,Tran B,Chen K,Chan N,Ho E,Sun S,Houshyar R

Affiliations (5)

  • University of California, Irvine, Orange, 101 The City Drive South, Rt. 140, 5005, 92868, CA, USA. [email protected].
  • University of California, Irvine, Orange, 101 The City Drive South, Rt. 140, 5005, 92868, CA, USA.
  • California University of Science and Medicine, Colton, USA.
  • Stony Brook University, Stony Brook, USA.
  • University of California, Irvine, Orange, 101 The City Drive South, Rt. 140, 5005, 92868, CA, USA. [email protected].

Abstract

Large language models (LLM) have shown promise in assisting medical decision-making. However, there is limited literature exploring the diagnostic accuracy of LLMs in generating differential diagnoses from text-based image descriptions and clinical presentations in pediatric radiology. To examine the performance of multiple proprietary LLMs in producing accurate differential diagnoses for text-based pediatric radiological cases without imaging. One hundred sixty-four cases were retrospectively selected from a pediatric radiology textbook and converted into two formats: (1) image description only, and (2) image description with clinical presentation. The ChatGPT-4 V, Claude 3.5 Sonnet, and Gemini 1.5 Pro algorithms were given these inputs and tasked with providing a top 1 diagnosis and a top 3 differential diagnoses. Accuracy of responses was assessed by comparison with the original literature. Top 1 accuracy was defined as whether the top 1 diagnosis matched the textbook, and top 3 differential accuracy was defined as the number of diagnoses in the model-generated top 3 differential that matched any of the top 3 diagnoses in the textbook. McNemar's test, Cochran's Q test, Friedman test, and Wilcoxon signed-rank test were used to compare algorithms and assess the impact of added clinical information, respectively. There was no significant difference in top 1 accuracy between ChatGPT-4 V, Claude 3.5 Sonnet, and Gemini 1.5 Pro when only image descriptions were provided (56.1% [95% CI 48.4-63.5], 64.6% [95% CI 57.1-71.5], 61.6% [95% CI 54.0-68.7]; P = 0.11). Adding clinical presentation to image description significantly improved top 1 accuracy for ChatGPT-4 V (64.0% [95% CI 56.4-71.0], P = 0.02) and Claude 3.5 Sonnet (80.5% [95% CI 73.8-85.8], P < 0.001). For image description and clinical presentation cases, Claude 3.5 Sonnet significantly outperformed both ChatGPT-4 V and Gemini 1.5 Pro (P < 0.001). For top 3 differential accuracy, no significant differences were observed between ChatGPT-4 V, Claude 3.5 Sonnet, and Gemini 1.5 Pro, regardless of whether the cases included only image descriptions (1.29 [95% CI 1.16-1.41], 1.35 [95% CI 1.23-1.48], 1.37 [95% CI 1.25-1.49]; P = 0.60) or both image descriptions and clinical presentations (1.33 [95% CI 1.20-1.45], 1.52 [95% CI 1.41-1.64], 1.48 [95% 1.36-1.59]; P = 0.72). Only Claude 3.5 Sonnet performed significantly better when clinical presentation was added (P < 0.001). Commercial LLMs performed similarly on pediatric radiology cases in providing top 1 accuracy and top 3 differential accuracy when only a text-based image description was used. Adding clinical presentation significantly improved top 1 accuracy for ChatGPT-4 V and Claude 3.5 Sonnet, with Claude showing the largest improvement. Claude 3.5 Sonnet outperformed both ChatGPT-4 V and Gemini 1.5 Pro in top 1 accuracy when both image and clinical data were provided. No significant differences were found in top 3 differential accuracy across models in any condition.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.