Sort by:
Page 87 of 1231228 results

DiffM<sup>4</sup>RI: A Latent Diffusion Model with Modality Inpainting for Synthesizing Missing Modalities in MRI Analysis.

Ye W, Guo Z, Ren Y, Tian Y, Shen Y, Chen Z, He J, Ke J, Shen Y

pubmed logopapersJun 17 2025
Foundation Models (FMs) have shown great promise for multimodal medical image analysis such as Magnetic Resonance Imaging (MRI). However, certain MRI sequences may be unavailable due to various constraints, such as limited scanning time, patient discomfort, or scanner limitations. The absence of certain modalities can hinder the performance of FMs in clinical applications, making effective missing modality imputation crucial for ensuring their applicability. Previous approaches, including generative adversarial networks (GANs), have been employed to synthesize missing modalities in either a one-to-one or many-to-one manner. However, these methods have limitations, as they require training a new model for different missing scenarios and are prone to mode collapse, generating limited diversity in the synthesized images. To address these challenges, we propose DiffM<sup>4</sup>RI, a diffusion model for many-to-many missing modality imputation in MRI. DiffM<sup>4</sup>RI innovatively formulates the missing modality imputation as a modality-level inpainting task, enabling it to handle arbitrary missing modality situations without the need for training multiple networks. Experiments on the BraTs datasets demonstrate DiffM<sup>4</sup>RI can achieve an average SSIM improvement of 0.15 over MustGAN, 0.1 over SynDiff, and 0.02 over VQ-VAE-2. These results highlight the potential of DiffM<sup>4</sup>RI in enhancing the reliability of FMs in clinical applications. The code is available at https://github.com/27yw/DiffM4RI.

Kernelized weighted local information based picture fuzzy clustering with multivariate coefficient of variation and modified total Bregman divergence measure for brain MRI image segmentation.

Lohit H, Kumar D

pubmed logopapersJun 16 2025
This paper proposes a novel clustering method for noisy image segmentation using a kernelized weighted local information approach under the Picture Fuzzy Set (PFS) framework. Existing kernel-based fuzzy clustering methods struggle with noisy environments and non-linear structures, while intuitionistic fuzzy clustering methods face limitations in handling uncertainty in real-world medical images. To address these challenges, we introduce a local picture fuzzy information measure, developed for the first time using Multivariate Coefficient of Variation (MCV) theory, enhancing robustness in segmentation. Additionally, we integrate non-Euclidean distance measures, including kernel distance for local information computation and modified total Bregman divergence (MTBD) measure for improving clustering accuracy. This combination enhances both local spatial consistency and global membership estimation, leading to precise segmentation. The proposed method is extensively evaluated on synthetic images with Gaussian, Salt and Pepper, and mixed noise, along with Brainweb, IBSR, and MRBrainS18 MRI datasets under varying Rician noise levels, and a CT image template. Furthermore, we benchmark our proposed method against two deep learning-based segmentation models, ResNet34-LinkNet and patch-based U-Net. Experimental results demonstrate significant improvements in segmentation accuracy, as validated by metrics such as Dice Score, Fuzzy Performance Index, Modified Partition Entropy, Average Volume Difference (AVD), and the XB index. Additionally, Friedman's statistical test confirms the superior performance of our approach compared to state-of-the-art clustering methods for noisy image segmentation. To facilitate reproducibility, the implementation of our proposed method is made publicly available at: Google Drive Repository.

Reaction-Diffusion Model for Brain Spacetime Dynamics.

Li Q, Calhoun VD

pubmed logopapersJun 16 2025
The human brain exhibits intricate spatiotemporal dynamics, which can be described and understood through the framework of complex dynamic systems theory. In this study, we leverage functional magnetic resonance imaging (fMRI) data to investigate reaction-diffusion processes in the brain. A reaction-diffusion process refers to the interaction between two or more substances that spread through space and react with each other over time, often resulting in the formation of patterns or waves of activity. Building on this empirical foundation, we apply a reaction-diffusion framework inspired by theoretical physics to simulate the emergence of brain spacetime vortices within the brain. By exploring this framework, we investigate how reaction-diffusion processes can serve as a compelling model to govern the formation and propagation of brain spacetime vortices, which are dynamic, swirling patterns of brain activity that emerge and evolve across both time and space within the brain. Our approach integrates computational modeling with fMRI data to investigate the spatiotemporal properties of these vortices, offering new insights into the fundamental principles of brain organization. This work highlights the potential of reaction-diffusion models as an alternative framework for understanding brain spacetime dynamics.

A Semi-supervised Ultrasound Image Segmentation Network Integrating Enhanced Mask Learning and Dynamic Temperature-controlled Self-distillation.

Xu L, Huang Y, Zhou H, Mao Q, Yin W

pubmed logopapersJun 16 2025
Ultrasound imaging is widely used in clinical practice due to its advantages of no radiation and real-time capability. However, its image quality is often degraded by speckle noise, low contrast, and blurred boundaries, which pose significant challenges for automatic segmentation. In recent years, deep learning methods have achieved notable progress in ultrasound image segmentation. Nonetheless, these methods typically require large-scale annotated datasets, incur high computational costs, and suffer from slow inference speeds, limiting their clinical applicability. To overcome these limitations, we propose EML-DMSD, a novel semi-supervised segmentation network that combines Enhanced Mask Learning (EML) and Dynamic Temperature-Controlled Multi-Scale Self-Distillation (DMSD). The EML module improves the model's robustness to noise and boundary ambiguity, while the DMSD module introduces a teacher-free, multi-scale self-distillation strategy with dynamic temperature adjustment to boost inference efficiency and reduce reliance on extensive resources. Experiments on multiple ultrasound benchmark datasets demonstrate that EML-DMSD achieves superior segmentation accuracy with efficient inference, highlighting its strong generalization ability and clinical potential.

TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network.

Zhang R, Jie B, He Y, Wang J

pubmed logopapersJun 16 2025
Computer-aided surgical simulation is a critical component of orthognathic surgical planning, where accurately simulating face-bone shape transformations is significant. The traditional biomechanical simulation methods are limited by their computational time consumption levels, labor-intensive data processing strategies and low accuracy. Recently, deep learning-based simulation methods have been proposed to view this problem as a point-to-point transformation between skeletal and facial point clouds. However, these approaches cannot process large-scale points, have limited receptive fields that lead to noisy points, and employ complex preprocessing and postprocessing operations based on registration. These shortcomings limit the performance and widespread applicability of such methods. Therefore, we propose a Transformer-based coarse-to-fine point movement network (TCFNet) to learn unique, complicated correspondences at the patch and point levels for dense face-bone point cloud transformations. This end-to-end framework adopts a Transformer-based network and a local information aggregation network (LIA-Net) in the first and second stages, respectively, which reinforce each other to generate precise point movement paths. LIA-Net can effectively compensate for the neighborhood precision loss of the Transformer-based network by modeling local geometric structures (edges, orientations and relative position features). The previous global features are employed to guide the local displacement using a gated recurrent unit. Inspired by deformable medical image registration, we propose an auxiliary loss that can utilize expert knowledge for reconstructing critical organs. Our framework is an unsupervised algorithm, and this loss is optional. Compared with the existing state-of-the-art (SOTA) methods on gathered datasets, TCFNet achieves outstanding evaluation metrics and visualization results. The code is available at https://github.com/Runshi-Zhang/TCFNet.

FairICP: identifying biases and increasing transparency at the point of care in post-implementation clinical decision support using inductive conformal prediction.

Sun X, Nakashima M, Nguyen C, Chen PH, Tang WHW, Kwon D, Chen D

pubmed logopapersJun 15 2025
Fairness concerns stemming from known and unknown biases in healthcare practices have raised questions about the trustworthiness of Artificial Intelligence (AI)-driven Clinical Decision Support Systems (CDSS). Studies have shown unforeseen performance disparities in subpopulations when applied to clinical settings different from training. Existing unfairness mitigation strategies often struggle with scalability and accessibility, while their pursuit of group-level prediction performance parity does not effectively translate into fairness at the point of care. This study introduces FairICP, a flexible and cost-effective post-implementation framework based on Inductive Conformal Prediction (ICP), to provide users with actionable knowledge of model uncertainty due to subpopulation level biases at the point of care. FairICP applies ICP to identify the model's scope of competence through group specific calibration, ensuring equitable prediction reliability by filtering predictions that fall within the trusted competence boundaries. We evaluated FairICP against four benchmarks on three medical imaging modalities: (1) Cardiac Magnetic Resonance Imaging (MRI), (2) Chest X-ray and (3) Dermatology Imaging, acquired from both private and large public datasets. Frameworks are assessed on prediction performance enhancement and unfairness mitigation capabilities. Compared to the baseline, FairICP improved prediction accuracy by 7.2% and reduced the accuracy gap between the privileged and unprivileged subpopulations by 2.2% on average across all three datasets. Our work provides a robust solution to promote trust and transparency in AI-CDSS, fostering equality and equity in healthcare for diverse patient populations. Such post-process methods are critical to enabling a robust framework for AI-CDSS implementation and monitoring for healthcare settings.

A multimodal deep learning model for detecting endoscopic images of near-infrared fluorescence capsules.

Wang J, Zhou C, Wang W, Zhang H, Zhang A, Cui D

pubmed logopapersJun 15 2025
Early screening for gastrointestinal (GI) diseases is critical for preventing cancer development. With the rapid advancement of deep learning technology, artificial intelligence (AI) has become increasingly prominent in the early detection of GI diseases. Capsule endoscopy is a non-invasive medical imaging technique used to examine the gastrointestinal tract. In our previous work, we developed a near-infrared fluorescence capsule endoscope (NIRF-CE) capable of exciting and capturing near-infrared (NIR) fluorescence images to specifically identify subtle mucosal microlesions and submucosal abnormalities while simultaneously capturing conventional white-light images to detect lesions with significant morphological changes. However, limitations such as low camera resolution and poor lighting within the gastrointestinal tract may lead to misdiagnosis and other medical errors. Manually reviewing and interpreting large volumes of capsule endoscopy images is time-consuming and prone to errors. Deep learning models have shown potential in automatically detecting abnormalities in NIRF-CE images. This study focuses on an improved deep learning model called Retinex-Attention-YOLO (RAY), which is based on single-modality image data and built on the YOLO series of object detection models. RAY enhances the accuracy and efficiency of anomaly detection, especially under low-light conditions. To further improve detection performance, we also propose a multimodal deep learning model, Multimodal-Retinex-Attention-YOLO (MRAY), which combines both white-light and fluorescence image data. The dataset used in this study consists of images of pig stomachs captured by our NIRF-CE system, simulating the human GI tract. In conjunction with a targeted fluorescent probe, which accumulates at lesion sites and releases fluorescent signals for imaging when abnormalities are present, a bright spot indicates a lesion. The MRAY model achieved an impressive precision of 96.3%, outperforming similar object detection models. To further validate the model's performance, ablation experiments were conducted, and comparisons were made with publicly available datasets. MRAY shows great promise for the automated detection of GI cancers, ulcers, inflammations, and other medical conditions in clinical practice.

FFLUNet: Feature Fused Lightweight UNet for brain tumor segmentation.

Kundu S, Dutta S, Mukhopadhyay J, Chakravorty N

pubmed logopapersJun 14 2025
Brain tumors, particularly glioblastoma multiforme, are considered one of the most threatening types of tumors in neuro-oncology. Segmenting brain tumors is a crucial part of medical imaging. It plays a key role in diagnosing conditions, planning treatments, and keeping track of patients' progress. This paper presents a novel lightweight deep convolutional neural network (CNN) model specifically designed for accurate and efficient brain tumor segmentation from magnetic resonance imaging (MRI) scans. Our model leverages a streamlined architecture that reduces computational complexity while maintaining high segmentation accuracy. We have introduced several novel approaches, including optimized convolutional layers that capture both local and global features with minimal parameters. A layerwise adaptive weighting feature fusion technique is implemented that enhances comprehensive feature representation. By incorporating shifted windowing, the model achieves better generalization across data variations. Dynamic weighting is introduced in skip connections that allows backpropagation to determine the ideal balance between semantic and positional features. To evaluate our approach, we conducted experiments on publicly available MRI datasets and compared our model against state-of-the-art segmentation methods. Our lightweight model has an efficient architecture with 1.45 million parameters - 95% fewer than nnUNet (30.78M), 91% fewer than standard UNet (16.21M), and 85% fewer than a lightweight hybrid CNN-transformer network (Liu et al., 2024) (9.9M). Coupled with a 4.9× faster GPU inference time (0.904 ± 0.002 s vs. nnUNet's 4.416 ± 0.004 s), the design enables real-time deployment on resource-constrained devices while maintaining competitive segmentation accuracy. Code is available at: FFLUNet.

Optimizing stroke detection with genetic algorithm-based feature selection in deep learning models.

Nayak GS, Mallick PK, Sahu DP, Kathi A, Reddy R, Viyyapu J, Pabbisetti N, Udayana SP, Sanapathi H

pubmed logopapersJun 14 2025
Brain stroke is a leading cause of disability and mortality worldwide, necessitating the development of accurate and efficient diagnostic models. In this study, we explore the integration of Genetic Algorithm (GA)-based feature selection with three state-of-the-art deep learning architectures InceptionV3, VGG19, and MobileNetV2 to enhance stroke detection from neuroimaging data. GA is employed to optimize feature selection, reducing redundancy and improving model performance. The selected features are subsequently fed into the respective deep-learning models for classification. The dataset used in this study comprises neuroimages categorized into "Normal" and "Stroke" classes. Experimental results demonstrate that incorporating GA improves classification accuracy while reducing computational complexity. A comparative analysis of the three architectures reveals their effectiveness in stroke detection, with MobileNetV2 achieving the highest accuracy of 97.21%. Notably, the integration of Genetic Algorithms with MobileNetV2 for feature selection represents a novel contribution, setting this study apart from prior approaches that rely solely on traditional CNN pipelines. Owing to its lightweight design and low computational demands, MobileNetV2 also offers significant advantages for real-time clinical deployment, making it highly applicable for use in emergency care settings where rapid diagnosis is critical. Additionally, performance metrics such as precision, recall, F1-score, and Receiver Operating Characteristic (ROC) curves are evaluated to provide comprehensive insights into model efficacy. This research underscores the potential of genetic algorithm-driven optimization in enhancing deep learning-based medical image classification, paving the way for more efficient and reliable stroke diagnosis.

ThreeF-Net: Fine-grained feature fusion network for breast ultrasound image segmentation.

Bian X, Liu J, Xu S, Liu W, Mei L, Xiao C, Yang F

pubmed logopapersJun 14 2025
Convolutional Neural Networks (CNNs) have achieved remarkable success in breast ultrasound image segmentation, but they still face several challenges when dealing with breast lesions. Due to the limitations of CNNs in modeling long-range dependencies, they often perform poorly in handling issues such as similar intensity distributions, irregular lesion shapes, and blurry boundaries, leading to low segmentation accuracy. To address these issues, we propose the ThreeF-Net, a fine-grained feature fusion network. This network combines the advantages of CNNs and Transformers, aiming to simultaneously capture local features and model long-range dependencies, thereby improving the accuracy and stability of segmentation tasks. Specifically, we designed a Transformer-assisted Dual Encoder Architecture (TDE), which integrates convolutional modules and self-attention modules to achieve collaborative learning of local and global features. Additionally, we designed a Global Group Feature Extraction (GGFE) module, which effectively fuses the features learned by CNNs and Transformers, enhancing feature representation ability. To further improve model performance, we also introduced a Dynamic Fine-grained Convolution (DFC) module, which significantly improves lesion boundary segmentation accuracy by dynamically adjusting convolution kernels and capturing multi-scale features. Comparative experiments with state-of-the-art segmentation methods on three public breast ultrasound datasets demonstrate that ThreeF-Net outperforms existing methods across multiple key evaluation metrics.
Page 87 of 1231228 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.