Sort by:
Page 82 of 99990 results

Children Are Not Small Adults: Addressing Limited Generalizability of an Adult Deep Learning CT Organ Segmentation Model to the Pediatric Population.

Chatterjee D, Kanhere A, Doo FX, Zhao J, Chan A, Welsh A, Kulkarni P, Trang A, Parekh VS, Yi PH

pubmed logopapersJun 1 2025
Deep learning (DL) tools developed on adult data sets may not generalize well to pediatric patients, posing potential safety risks. We evaluated the performance of TotalSegmentator, a state-of-the-art adult-trained CT organ segmentation model, on a subset of organs in a pediatric CT dataset and explored optimization strategies to improve pediatric segmentation performance. TotalSegmentator was retrospectively evaluated on abdominal CT scans from an external adult dataset (n = 300) and an external pediatric data set (n = 359). Generalizability was quantified by comparing Dice scores between adult and pediatric external data sets using Mann-Whitney U tests. Two DL optimization approaches were then evaluated: (1) 3D nnU-Net model trained on only pediatric data, and (2) an adult nnU-Net model fine-tuned on the pediatric cases. Our results show TotalSegmentator had significantly lower overall mean Dice scores on pediatric vs. adult CT scans (0.73 vs. 0.81, P < .001) demonstrating limited generalizability to pediatric CT scans. Stratified by organ, there was lower mean pediatric Dice score for four organs (P < .001, all): right and left adrenal glands (right adrenal, 0.41 [0.39-0.43] vs. 0.69 [0.66-0.71]; left adrenal, 0.35 [0.32-0.37] vs. 0.68 [0.65-0.71]); duodenum (0.47 [0.45-0.49] vs. 0.67 [0.64-0.69]); and pancreas (0.73 [0.72-0.74] vs. 0.79 [0.77-0.81]). Performance on pediatric CT scans improved by developing pediatric-specific models and fine-tuning an adult-trained model on pediatric images where both methods significantly improved segmentation accuracy over TotalSegmentator for all organs, especially for smaller anatomical structures (e.g., > 0.2 higher mean Dice for adrenal glands; P < .001).

A Robust [<sup>18</sup>F]-PSMA-1007 Radiomics Ensemble Model for Prostate Cancer Risk Stratification.

Pasini G, Stefano A, Mantarro C, Richiusa S, Comelli A, Russo GI, Sabini MG, Cosentino S, Ippolito M, Russo G

pubmed logopapersJun 1 2025
The aim of this study is to investigate the role of [<sup>18</sup>F]-PSMA-1007 PET in differentiating high- and low-risk prostate cancer (PCa) through a robust radiomics ensemble model. This retrospective study included 143 PCa patients who underwent [<sup>18</sup>F]-PSMA-1007 PET/CT imaging. PCa areas were manually contoured on PET images and 1781 image biomarker standardization initiative (IBSI)-compliant radiomics features were extracted. A 30 times iterated preliminary analysis pipeline, comprising of the least absolute shrinkage and selection operator (LASSO) for feature selection and fivefold cross-validation for model optimization, was adopted to identify the most robust features to dataset variations, select candidate models for ensemble modelling, and optimize hyperparameters. Thirteen subsets of selected features, 11 generated from the preliminary analysis plus two additional subsets, the first based on the combination of robust and fine-tuning features, and the second only on fine-tuning features were used to train the model ensemble. Accuracy, area under curve (AUC), sensitivity, specificity, precision, and f-score values were calculated to provide models' performance. Friedman test, followed by post hoc tests corrected with Dunn-Sidak correction for multiple comparisons, was used to verify if statistically significant differences were found in the different ensemble models over the 30 iterations. The model ensemble trained with the combination of robust and fine-tuning features obtained the highest average accuracy (79.52%), AUC (85.75%), specificity (84.29%), precision (82.85%), and f-score (78.26%). Statistically significant differences (p < 0.05) were found for some performance metrics. These findings support the role of [<sup>18</sup>F]-PSMA-1007 PET radiomics in improving risk stratification for PCa, by reducing dependence on biopsies.

Applying Deep-Learning Algorithm Interpreting Kidney, Ureter, and Bladder (KUB) X-Rays to Detect Colon Cancer.

Lee L, Lin C, Hsu CJ, Lin HH, Lin TC, Liu YH, Hu JM

pubmed logopapersJun 1 2025
Early screening is crucial in reducing the mortality of colorectal cancer (CRC). Current screening methods, including fecal occult blood tests (FOBT) and colonoscopy, are primarily limited by low patient compliance and the invasive nature of the procedures. Several advanced imaging techniques such as computed tomography (CT) and histological imaging have been integrated with artificial intelligence (AI) to enhance the detection of CRC. There are still limitations because of the challenges associated with image acquisition and the cost. Kidney, ureter, and bladder (KUB) radiograph which is inexpensive and widely used for abdominal assessments in emergency settings and shows potential for detecting CRC when enhanced using advanced techniques. This study aimed to develop a deep learning model (DLM) to detect CRC using KUB radiographs. This retrospective study was conducted using data from the Tri-Service General Hospital (TSGH) between January 2011 and December 2020, including patients with at least one KUB radiograph. Patients were divided into development (n = 28,055), tuning (n = 11,234), and internal validation (n = 16,875) sets. An additional 15,876 patients were collected from a community hospital as the external validation set. A 121-layer DenseNet convolutional network was trained to classify KUB images for CRC detection. The model performance was evaluated using receiver operating characteristic curves, with sensitivity, specificity, and area under the curve (AUC) as metrics. The AUC, sensitivity, and specificity of the DLM in the internal and external validation sets achieved 0.738, 61.3%, and 74.4%, as well as 0.656, 47.7%, and 72.9%, respectively. The model performed better for high-grade CRC, with AUCs of 0.744 and 0.674 in the internal and external sets, respectively. Stratified analysis showed superior performance in females aged 55-64 with high-grade cancers. AI-positive predictions were associated with a higher long-term risk of all-cause mortality in both validation cohorts. AI-enhanced KUB X-ray analysis can enhance CRC screening coverage and effectiveness, providing a cost-effective alternative to traditional methods. Further prospective studies are necessary to validate these findings and fully integrate this technology into clinical practice.

Treatment Response Assessment According to Updated PROMISE Criteria in Patients with Metastatic Prostate Cancer Using an Automated Imaging Platform for Identification, Measurement, and Temporal Tracking of Disease.

Benitez CM, Sahlstedt H, Sonni I, Brynolfsson J, Berenji GR, Juarez JE, Kane N, Tsai S, Rettig M, Nickols NG, Duriseti S

pubmed logopapersJun 1 2025
Prostate-specific membrane antigen (PSMA) molecular imaging is widely used for disease assessment in prostate cancer (PC). Artificial intelligence (AI) platforms such as automated Prostate Cancer Molecular Imaging Standardized Evaluation (aPROMISE) identify and quantify locoregional and distant disease, thereby expediting lesion identification and standardizing reporting. Our aim was to evaluate the ability of the updated aPROMISE platform to assess treatment responses based on integration of the RECIP (Response Evaluation Criteria in PSMA positron emission tomography-computed tomography [PET/CT]) 1.0 classification. The study included 33 patients with castration-sensitive PC (CSPC) and 34 with castration-resistant PC (CRPC) who underwent PSMA-targeted molecular imaging before and ≥2 mo after completion of treatment. Tracer-avid lesions were identified using aPROMISE for pretreatment and post-treatment PET/CT scans. Detected lesions were manually approved by an experienced nuclear medicine physician, and total tumor volume (TTV) was calculated. Response was assessed according to RECIP 1.0 as CR (complete response), PR (partial response), PD (progressive disease), or SD (stable disease). KEY FINDINGS AND LIMITATIONS: aPROMISE identified 1576 lesions on baseline scans and 1631 lesions on follow-up imaging, 618 (35%) of which were new. Of the 67 patients, aPROMISE classified four as CR, 16 as PR, 34 as SD, and 13 as PD; five cases were misclassified. The agreement between aPROMISE and clinician validation was 89.6% (κ = 0.79). aPROMISE may serve as a novel assessment tool for treatment response that integrates PSMA PET/CT results and RECIP imaging criteria. The precision and accuracy of this automated process should be validated in prospective clinical studies. We used an artificial intelligence (AI) tool to analyze scans for prostate cancer before and after treatment to see if we could track how cancer spots respond to treatment. We found that the AI approach was successful in tracking individual tumor changes, showing which tumors disappeared, and identifying new tumors in response to prostate cancer treatment.

Prediction of therapeutic response to transarterial chemoembolization plus systemic therapy regimen in hepatocellular carcinoma using pretreatment contrast-enhanced MRI based habitat analysis and Crossformer model.

Zhu Y, Liu T, Chen J, Wen L, Zhang J, Zheng D

pubmed logopapersJun 1 2025
To develop habitat and deep learning (DL) models from multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) habitat images categorized using the K-means clustering algorithm. Additionally, we aim to assess the predictive value of identified regions for early evaluation of the responsiveness of hepatocellular carcinoma (HCC) patients to treatment with transarterial chemoembolization (TACE) plus molecular targeted therapies (MTT) and anti-PD-(L)1. A total of 102 patients with HCC from two institutions (A, n = 63 and B, n = 39) who received TACE plus systemic therapy were enrolled from September 2020 to January 2024. Multiple CE-MRI sequences were used to outline 3D volumes of interest (VOI) of the lesion. Subsequently, K-means clustering was applied to categorize intratumoral voxels into three distinct subgroups, based on signal intensity values of images. Using data from institution A, the habitat model was built with the ExtraTrees classifier after extracting radiomics features from intratumoral habitats. Similarly, the Crossformer model and ResNet50 model were trained on multi-channel data in institution A, and a DL model with Transformer-based aggregation was constructed to predict the response. Finally, all models underwent validation at institution B. The Crossformer model and the habitat model both showed high area under the receiver operating characteristic curves (AUCs) of 0.869 and 0.877 (training cohort). In validation, AUC was 0.762 for the Crossformer model and 0.721 for the habitat model. The habitat model and DL model based on CE-MRI possesses the capability to non-invasively predict the efficacy of TACE plus systemic therapy in HCC patients, which is critical for precision treatment and patient outcomes.

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T

pubmed logopapersJun 1 2025
The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.

MRI-based radiomic nomogram for predicting disease-free survival in patients with locally advanced rectal cancer.

Liu J, Liu K, Cao F, Hu P, Bi F, Liu S, Jian L, Zhou J, Nie S, Lu Q, Yu X, Wen L

pubmed logopapersJun 1 2025
Individual prognosis assessment is of paramount importance for treatment decision-making and active surveillance in cancer patients. We aimed to propose a radiomic model based on pre- and post-therapy MRI features for predicting disease-free survival (DFS) in locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy (nCRT) and subsequent surgical resection. This retrospective study included a total of 126 LARC patients, which were randomly assigned to a training set (n = 84) and a validation set (n = 42). All patients underwent pre- and post-nCRT MRI scans. Radiomic features were extracted from higher resolution T2-weighted images. Pearson correlation analysis and ANOVA or Relief were utilized for identifying radiomic features associated with DFS. Pre-treatment, post-treatment, and delta radscores were constructed by machine learning algorithms. An individualized nomogram was developed based on significant radscores and clinical variables using multivariate Cox regression analysis. Predictive performance was evaluated by the C-index, calibration curve, and decision curve analysis. The results demonstrated that in the validation set, the clinical model including pre-surgery carcinoembryonic antigen (CEA), chemotherapy after radiotherapy, and pathological stage yielded a C-index of 0.755 (95% confidence interval [CI]: 0.739-0.771). While the optimal pre-, post-, and delta-radscores achieved C-indices of 0.724 (95%CI: 0.701-0.747), 0.701 (95%CI: 0.671-0.731), and 0.625 (95%CI: 0.589-0.661), respectively. The nomogram integrating pre-surgery CEA, pathological stage, alongside pre- and post-nCRT radscore, obtained the highest C-index of 0.833 (95%CI: 0.815-0.851). The calibration curve and decision curves exhibited good calibration and clinical usefulness of the nomogram. Furthermore, the nomogram categorized patients into high- and low-risk groups exhibiting distinct DFS (both P < 0.0001). The nomogram incorporating pre- and post-therapy radscores and clinical factors could predict DFS in patients with LARC, which helps clinicians in optimizing decision-making and surveillance in real-world settings.

Comparing fully automated AI body composition biomarkers at differing virtual monoenergetic levels using dual-energy CT.

Toia GV, Garret JW, Rose SD, Szczykutowicz TP, Pickhardt PJ

pubmed logopapersJun 1 2025
To investigate the behavior of artificial intelligence (AI) CT-based body composition biomarkers at different virtual monoenergetic imaging (VMI) levels using dual-energy CT (DECT). This retrospective study included 88 contrast-enhanced abdominopelvic CTs acquired with rapid-kVp switching DECT. Images were reconstructed into five VMI levels (40, 55, 70, 85, 100 keV). Fully automated algorithms for quantifying CT number (HU) in abdominal fat (subcutaneous and visceral), skeletal muscle, bone, calcium (abdominal Agatston score), and organ size (area or volume) were applied. Biomarker median difference relative to 70 keV and interquartile range were reported by energy level to characterize variation. Linear regression was performed to calibrate non-70 keV data and to estimate their equivalent 70 keV biomarker attenuation values. Relative to 70 keV, absolute median differences in attenuation-based biomarkers (excluding Agatston score) ranged 39-358, 12-102, 5-48, 9-75 HU for 40, 55, 85, 100 keV, respectively. For area-based biomarkers, differences ranged 6-15, 3-4, 2-7, 0-5 cm<sup>2</sup> for 40, 55, 85, 100 keV. For volume-based biomarkers, differences ranged 12-34, 8-68, 12-52, 1-57 cm<sup>3</sup> for 40, 55, 85, 100 keV. Agatston score behavior was more spurious with median differences ranging 70-204 HU. In general, VMI < 70 keV showed more variation in median biomarker measurement than VMI > 70 keV. This study characterized the behavior of a fully automated AI CT biomarker toolkit across varying VMI levels obtained with DECT. The data showed relatively little biomarker value change when measured at or greater than 70 keV. Lower VMI datasets should be avoided due to larger deviations in measured value as compared to 70 keV, a level considered equivalent to conventional 120 kVp exams.
Page 82 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.