Sort by:
Page 80 of 3133125 results

BDEC: Brain Deep Embedded Clustering Model for Resting State fMRI Group-Level Parcellation of the Human Cerebral Cortex.

Zhu J, Ma X, Wei B, Zhong Z, Zhou H, Jiang F, Zhu H, Yi C

pubmed logopapersJul 17 2025
To develop a robust group-level brain parcellation method using deep learning based on resting-state functional magnetic resonance imaging (rs-fMRI), aiming to release the model assumptions made by previous approaches. We proposed Brain Deep Embedded Clustering (BDEC), a deep clustering model that employs a loss function designed to maximize inter-class separation and enhance intra-class similarity, thereby promoting the formation of functionally coherent brain regions. Compared to ten widely used brain parcellation methods, the BDEC model demonstrates significantly improved performance in various functional homogeneity metrics. It also showed favorable results in parcellation validity, downstream tasks, task inhomogeneity, and generalization capability. The BDEC model effectively captures intrinsic functional properties of the brain, supporting reliable and generalizable parcellation outcomes. BDEC provides a useful parcellation for brain network analysis and dimensionality reduction of rs-fMRI data, while also contributing to a deeper understanding of the brain's functional organization.

A multi-stage training and deep supervision based segmentation approach for 3D abdominal multi-organ segmentation.

Wu P, An P, Zhao Z, Guo R, Ma X, Qu Y, Xu Y, Yu H

pubmed logopapersJul 17 2025
Accurate X-ray Computed tomography (CT) image segmentation of the abdominal organs is fundamental for diagnosing abdominal diseases, planning cancer treatment, and formulating radiotherapy strategies. However, the existing deep learning based models for three-dimensional (3D) CT image abdominal multi-organ segmentation face challenges, including complex organ distribution, scarcity of labeled data, and diversity of organ structures, leading to difficulties in model training and convergence and low segmentation accuracy. To address these issues, a novel multi-stage training and a deep supervision model based segmentation approach is proposed. It primary integrates multi-stage training, pseudo- labeling technique, and a developed deep supervision model with attention mechanism (DLAU-Net), specifically designed for 3D abdominal multi-organ segmentation. The DLAU-Net enhances segmentation performance and model adaptability through an improved network architecture. The multi-stage training strategy accelerates model convergence and enhances generalizability, effectively addressing the diversity of abdominal organ structures. The introduction of pseudo-labeling training alleviates the bottleneck of labeled data scarcity and further improves the model's generalization performance and training efficiency. Experiments were conducted on a large dataset provided by the FLARE 2023 Challenge. Comprehensive ablation studies and comparative experiments were conducted to validate the effectiveness of the proposed method. Our method achieves an average organ accuracy (AVG) of 90.5% and a Dice Similarity Coefficient (DSC) of 89.05% and exhibits exceptional performance in terms of training speed and handling data diversity, particularly in the segmentation tasks of critical abdominal organs such as the liver, spleen, and kidneys, significantly outperforming existing comparative methods.

FSS-ULivR: a clinically-inspired few-shot segmentation framework for liver imaging using unified representations and attention mechanisms.

Debnath RK, Rahman MA, Azam S, Zhang Y, Jonkman M

pubmed logopapersJul 17 2025
Precise liver segmentation is critical for accurate diagnosis and effective treatment planning, serving as a foundation for medical image analysis. However, existing methods struggle with limited labeled data, poor generalizability, and insufficient integration of anatomical and clinical features. To address these limitations, we propose a novel Few-Shot Segmentation model with Unified Liver Representation (FSS-ULivR), which employs a ResNet-based encoder enhanced with Squeeze-and-Excitation modules to improve feature learning, an enhanced prototype module that utilizes a transformer block and channel attention for dynamic feature refinement, and a decoder with improved attention gates and residual refinement strategies to recover spatial details from encoder skip connections. Through extensive experiments, our FSS-ULivR model achieved an outstanding Dice coefficient of 98.94%, Intersection over Union (IoU) of 97.44% and a specificity of 93.78% on the Liver Tumor Segmentation Challenge dataset. Cross-dataset evaluations further demonstrated its generalizability, with Dice scores of 95.43%, 92.98%, 90.72%, and 94.05% on 3DIRCADB01, Colorectal Liver Metastases, Computed Tomography Organs (CT-ORG), and Medical Segmentation Decathlon Task 3: Liver datasets, respectively. In multi-organ segmentation on CT-ORG, it delivered Dice scores ranging from 85.93% to 94.26% across bladder, bones, kidneys, and lungs. For brain tumor segmentation on BraTS 2019 and 2020 datasets, average Dice scores were 90.64% and 89.36% across whole tumor, tumor core, and enhancing tumor regions. These results emphasize the clinical importance of our model by demonstrating its ability to deliver precise and reliable segmentation through artificial intelligence techniques and engineering solutions, even in scenarios with scarce annotated data.

Characterizing structure-function coupling in subjective memory complaints of preclinical Alzheimer's disease.

Wei C, Wang J, Xue Y, Jiang J, Cao M, Li S, Chen X

pubmed logopapersJul 17 2025
BackgroundSubjective cognitive decline (SCD) is recognized as an early phase in the progression of Alzheimer's disease (AD).ObjectiveTo explore the abnormal patterns of morphological and functional connectivity coupling (MC-FC coupling) and their potential diagnostic significance in SCD.MethodsThe data of 52 individuals with SCD and 51 age-gender-education matched healthy controls (HC) who underwent resting-state functional magnetic resonance imaging and high-resolution 3D T<sub>1</sub>-weighted imaging were retrieved to build the MC and FC of gray matter. Support vector machine (SVM) methods were used for differentiating between SCD and HC.ResultsSCD individuals exhibited MC-FC decoupling in the frontoparietal network compared with HC (p = 0.002, 5000 permutations). Using these adjusted MC-FC coupling metrics, SVM analysis achieved 74.76% accuracy, 64.71% sensitivity, and 92.31% specificity (p < 0.001, 5000 permutations). Additionally, the stronger MC-FC coupling of the left inferior temporal gyrus (r = 0.294, p = 0.034) and right posterior cingulate gyrus (r = 0.372, p = 0.007) in SCD individuals was positively correlated with subjective memory complaint performance.ConclusionsThe findings of this study provide insight into the idiosyncratic feature of brain organization underlying SCD from the prospective of MC-FC coupling and highlight the potential of MC-FC coupling for the identification of the preclinical stage of AD.

The application of super-resolution ultrasound radiomics models in predicting the failure of conservative treatment for ectopic pregnancy.

Zhang M, Sheng J

pubmed logopapersJul 17 2025
Conservative treatment remains a viable option for selected patients with ectopic pregnancy (EP), but failure may lead to rupture and serious complications. Currently, serum β-hCG is the main predictor for treatment outcomes, yet its accuracy is limited. This study aimed to develop and validate a predictive model that integrates radiomic features derived from super-resolution (SR) ultrasound images with clinical biomarkers to improve risk stratification. A total of 228 patients with EP receiving conservative treatment were retrospectively included, with 169 classified as treatment success and 59 as failure. SR images were generated using a deep learning-based generative adversarial network (GAN). Radiomic features were extracted from both normal-resolution (NR) and SR ultrasound images. Features with intraclass correlation coefficient (ICC) ≥ 0.75 were retained after intra- and inter-observer evaluation. Feature selection involved statistical testing and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Random forest algorithms were used to construct NR and SR models. A clinical model based on serum β-hCG was also developed. The Clin-SR model was constructed by fusing SR radiomics with β-hCG values. Model performance was evaluated using area under the curve (AUC), calibration, and decision curve analysis (DCA). An independent temporal validation cohort (n = 40; 20 failures, 20 successes) was used to validation of the nomogram derived from the Clin-SR model. The SR model significantly outperformed the NR model in the test cohort (AUC: 0.791 ± 0.015 vs. 0.629 ± 0.083). In a representative iteration, the Clin-SR fusion model achieved an AUC of 0.870 ± 0.015, with good calibration and net clinical benefit, suggesting reliable performance in predicting conservative treatment failure. In the independent validation cohort, the nomogram demonstrated good generalizability with an AUC of 0.808 and consistent calibration across risk thresholds. Key contributing radiomic features included Gray Level Variance and Voxel Volume, reflecting lesion heterogeneity and size. The Clin-SR model, which integrates deep learning-enhanced SR ultrasound radiomics with serum β-hCG, offers a robust and non-invasive tool for predicting conservative treatment failure in ectopic pregnancy. This multimodal approach enhances early risk stratification and supports personalized clinical decision-making, potentially reducing overtreatment and emergency interventions.

Opportunistic computed tomography (CT) assessment of osteoporosis in patients undergoing transcatheter aortic valve replacement (TAVR).

Paukovitsch M, Fechner T, Felbel D, Moerike J, Rottbauer W, Klömpken S, Brunner H, Kloth C, Beer M, Sekuboyina A, Buckert D, Kirschke JS, Sollmann N

pubmed logopapersJul 17 2025
CT-based opportunistic screening using artificial intelligence finds a high prevalence (43%) of osteoporosis in CT scans obtained for planning of transcatheter aortic valve replacement. Thus, opportunistic screening may be a cost-effective way to assess osteoporosis in high-risk populations. Osteoporosis is an underdiagnosed condition associated with fractures and frailty, but may be detected in routine computed tomography (CT) scans. Volumetric bone mineral density (vBMD) was measured in clinical routine thoraco-abdominal CT scans of 207 patients for planning of transcatheter aortic valve replacement (TAVR) using an artificial intelligence (AI)-based algorithm. 43% of patients had osteoporosis (vBMD < 80 mg/cm<sup>3</sup> L1-L3) and were elderly (83.0 {interquartile range [IQR]: 78.0-85.5} vs. 79.0 {IQR: 71.8-84.0} years, p < 0.001), more often female (55.1 vs. 28.8%, p < 0.001), and had a higher Society of Thoracic Surgeon's score for mortality (3.0 {IQR:1.8-4.6} vs. 2.1 {IQR: 1.4-3.2}%, p < 0.001). In addition to lumbar vBMD (58.2 ± 14.7 vs. 106 ± 21.4 mg/cm<sup>3</sup>, p < 0.001), thoracic vBMD (79.5 ± 17.9 vs. 127.4 ± 26.0 mg/cm<sup>3</sup>, p < 0.001) was also significantly reduced in these patients and showed high diagnostic accuracy for osteoporosis assessment (area under curve: 0.96, p < 0.001). Osteoporotic patients were significantly more often at risk for falls (40.4 vs. 22.9%, p = 0.007) and required help in activities of daily life (ADL) more frequently (48.3 vs. 33.1%, p = 0.026), while direct-to-home discharges were fewer (88.8 vs. 96.6%, p = 0.026). In-hospital bleeding complications (3.4 vs. 5.1%), stroke (1.1 vs. 2.5%), and death (1.1 vs. 0.8%) were equally low, while in-hospital device success was equally high (94.4 vs. 94.9%, p > 0.05 for all comparisons). However, one-year probability of survival was significantly lower (84.0 vs. 98.2%, log-rank p < 0.01). Applying an AI-based algorithm to TAVR planning CT scans can reveal a high rate of 43% patients having osteoporosis. Osteoporosis may represent a marker related to frailty and worsened outcome in TAVR patients.

2D-3D deformable image registration of histology slide and micro-CT with DISA-based initialization.

Chen J, Ronchetti M, Stehl V, Nguyen V, Kallaa MA, Gedara MT, Lölkes C, Moser S, Seidl M, Wieczorek M

pubmed logopapersJul 17 2025
Recent developments in the registration of histology and micro-computed tomography (µCT) have broadened the perspective of pathological applications such as virtual histology based on µCT. This topic remains challenging because of the low image quality of soft tissue CT. Additionally, soft tissue samples usually deform during the histology slide preparation, making it difficult to correlate the structures between the histology slide and µCT. In this work, we propose a novel 2D-3D multi-modal deformable image registration method. The method utilizes an initial global 2D-3D registration using an ML-based differentiable similarity measure. The registration is then finalized by an analytical out-of-plane deformation refinement. The method is evaluated on datasets acquired from tonsil and tumor tissues. µCTs of both phase-contrast and conventional absorption modalities are investigated. The registration results from the proposed method are compared with those from intensity- and keypoint-based methods. The comparison is conducted using both visual and fiducial-based evaluations. The proposed method demonstrates superior performance compared to the other two methods.

An AI method to predict pregnancy loss by extracting biological indicators from embryo ultrasound recordings in early pregnancy.

Liu L, Zang Y, Zheng H, Li S, Song Y, Feng X, Zhang X, Li Y, Cao L, Zhou G, Dong T, Huang Q, Pan T, Deng J, Cheng D

pubmed logopapersJul 17 2025
B-ultrasound results are widely used in early pregnancy loss (EPL) prediction, but there are inevitable intra-observer and inter-observer errors in B-ultrasound results especially in early pregnancy, which lead to inconsistent assessment of embryonic status, and thus affect the judgment of EPL. To address this, we need a rapid and accurate model to predict pregnancy loss in the first trimester. This study aimed to construct an artificial intelligence model to automatically extract biometric parameters from ultrasound videos of early embryos and predict pregnancy loss. This can effectively eliminate the measurement error of B-ultrasound results, accurately predict EPL, and provide decision support for doctors with relatively little clinical experience. A total of 630 ultrasound videos from women with early singleton pregnancies of gestational age between 6 and 10 weeks were used for training. A two-stage artificial intelligence model was established. First, some biometric parameters such as gestational sac areas (GSA), yolk sac diameter (YSD), crown rump length (CRL) and fetal heart rate (FHR), were extract from ultrasound videos by a deep neural network named A3F-net, which is a modified neural network based on U-Net designed by ourselves. Then an ensemble learning model predicted pregnancy loss risk based on these features. Dice, IOU and Precision were used to evaluate the measurement results, and sensitivity, AUC etc. were used to evaluate the predict results. The fetal heart rate was compared with those measured by doctors, and the accuracy of results was compared with other AI models. In the biometric features measurement stage, the precision of GSA, YSD and CRL of A3F-net were 98.64%, 96.94% and 92.83%, it was the highest compared to other 2 models. Bland-Altman analysis did not show systematic deviations between doctors and AI. The mean and standard deviation of the mean relative error between doctors and the AI model was 0.060 ± 0.057. In the EPL prediction stage, the ensemble learning models demonstrated excellent performance, with CatBoost being the best-performing model, achieving a precision of 98.0% and an AUC of 0.969 (95% CI: 0.962-0.975). In this study, a hybrid AI model to predict EPL was established. First, a deep neural network automatically measured the biometric parameters from ultrasound video to ensure the consistency and accuracy of the measurements, then a machine learning model predicted EPL risk to support doctors making decisions. The use of our established AI model in EPL prediction has the potential to assist physicians in making more accurate and timely clinical decision in clinical application.

Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions.

Serino DA, Bell E, Klasky M, Southworth BS, Nadiga B, Wilcox T, Korobkin O

pubmed logopapersJul 17 2025
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the machine learning architectures are able to accurately infer initial conditions and EOS parameters, and that the estimated parameters can be used in a hydrodynamics code to obtain density fields, shocks, and material interfaces that satisfy thermodynamic and hydrodynamic consistency. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model. To the best of our knowledge, our framework is the first demonstration of recovering both thermodynamic and hydrodynamic consistent density fields from noisy radiographs.

Integrative radiomics of intra- and peri-tumoral features for enhanced risk prediction in thymic tumors: a multimodal analysis of tumor microenvironment contributions.

Zhu L, Li J, Wang X, He Y, Li S, He S, Deng B

pubmed logopapersJul 17 2025
This study aims to explore the role of intra- and peri-tumoral radiomics features in tumor risk prediction, with a particular focus on the impact of peri-tumoral characteristics on the tumor microenvironment. A total of 133 patients, including 128 with thymomas and 5 with thymic carcinomas, were ultimately enrolled in this study. Based on the high- and low-risk classification, the cohort was divided into a training set (n = 93) and a testing set (n = 40) for subsequent analysis.Based on imaging data from these 133 patients, multiple radiomics prediction models integrating intra-tumoral and peritumoral features were developed. The data were sourced from patients treated at the Affiliated Hospital of Guangdong Medical University between 2015 and 2023, with all imaging obtained through preoperative CT scans. Radiomics feature extraction involved three primary categories: first-order features, shape features, and high-order features. Initially, the tumor's region of interest (ROI) was manually delineated using ITK-SNAP software. A custom Python algorithm was then used to automatically expand the peri-tumoral area, extracting features within 1 mm, 2 mm, and 3 mm zones surrounding the tumor. Additionally, considering the multimodal nature of the imaging data, image fusion techniques were incorporated to further enhance the model's ability to capture the tumor microenvironment. To build the radiomics models, selected features were first standardized using z-scores. Initial feature selection was performed using a t-test (p < 0.05), followed by Spearman correlation analysis to remove redundancy by retaining only one feature from each pair with a correlation coefficient ≥ 0.90. Subsequently, hierarchical clustering and the LASSO algorithm were applied to identify the most predictive features. These selected features were then used to train machine learning models, which were optimized on the training dataset and assessed for predictive performance. To further evaluate the effectiveness of these models, various statistical methods were applied, including DeLong's test, NRI, and IDI, to compare predictive differences among models. Decision curve analysis (DCA) was also conducted to assess the clinical applicability of the models. The results indicate that the IntraPeri1mm model performed the best, achieving an AUC of 0.837, with sensitivity and specificity at 0.846 and 0.84, respectively, significantly outperforming other models. SHAP value analysis identified several key features, such as peri_log_sigma_2_0_mm 3D_firstorder RootMeanSquared and intra_wavelet_LLL_firstorder Skewness, which made substantial contributions to the model's predictive accuracy. NRI and IDI analyses further confirmed the model's superior clinical applicability, and the DCA curve demonstrated robust performance across different thresholds. DeLong's test highlighted the statistical significance of the IntraPeri1mm model, underscoring its potential utility in radiomics research. Overall, this study provides a new perspective on tumor risk assessment, highlighting the importance of peri-tumoral features in the analysis of the tumor microenvironment. It aims to offer valuable insights for the development of personalized treatment plans. Not applicable.
Page 80 of 3133125 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.