Sort by:
Page 75 of 91902 results

Impact of contrast-enhanced agent on segmentation using a deep learning-based software "Ai-Seg" for head and neck cancer.

Kihara S, Ueda Y, Harada S, Masaoka A, Kanayama N, Ikawa T, Inui S, Akagi T, Nishio T, Konishi K

pubmed logopapersMay 26 2025
In radiotherapy, auto-segmentation tools using deep learning assist in contouring organs-at-risk (OARs). We developed a segmentation model for head and neck (HN) OARs dedicated to contrast-enhanced (CE) computed tomography (CT) using the segmentation software, Ai-Seg, and compared the performance between CE and non-CE (nCE) CT. The retrospective study recruited 321 patients with HN cancers and trained a segmentation model using CE CT (CE model). The CE model was installed in Ai-Seg and applied to additional 25 patients with CE and nCE CT. The Dice similarity coefficient (DSC) and average Hausdorff distance (AHD) were calculated between the ground truth and Ai-Seg contours for brain, brainstem, chiasm, optic nerves, cochleae, oral cavity, parotid glands, pharyngeal constrictor muscle, and submandibular glands (SMGs). We compared the CE model and the existing model trained with nCE CT available in Ai-Seg for 6 OARs. The CE model obtained significantly higher DSCs on CE CT for parotid and SMGs compared to the existing model. The CE model provided significantly lower DSC values and higher AHD values on nCE CT for SMGs than on CE CT, but comparable values for other OARs. The CE model achieved significantly better performance than the existing model and can be used on nCE CT images without significant performance difference, except SMGs. Our results may facilitate the adoption of segmentation tools in clinical practice. We developed a segmentation model for HN OARs dedicated to CE CT using Ai-Seg and evaluated its usability on nCE CT.

Detecting microcephaly and macrocephaly from ultrasound images using artificial intelligence.

Mengistu AK, Assaye BT, Flatie AB, Mossie Z

pubmed logopapersMay 26 2025
Microcephaly and macrocephaly, which are abnormal congenital markers, are associated with developmental and neurologic deficits. Hence, there is a medically imperative need to conduct ultrasound imaging early on. However, resource-limited countries such as Ethiopia are confronted with inadequacies such that access to trained personnel and diagnostic machines inhibits the exact and continuous diagnosis from being met. This study aims to develop a fetal head abnormality detection model from ultrasound images via deep learning. Data were collected from three Ethiopian healthcare facilities to increase model generalizability. The recruitment period for this study started on November 9, 2024, and ended on November 30, 2024. Several preprocessing techniques have been performed, such as augmentation, noise reduction, and normalization. SegNet, UNet, FCN, MobileNetV2, and EfficientNet-B0 were applied to segment and measure fetal head structures using ultrasound images. The measurements were classified as microcephaly, macrocephaly, or normal using WHO guidelines for gestational age, and then the model performance was compared with that of existing industry experts. The metrics used for evaluation included accuracy, precision, recall, the F1 score, and the Dice coefficient. This study was able to demonstrate the feasibility of using SegNet for automatic segmentation, measurement of abnormalities of the fetal head, and classification of macrocephaly and microcephaly, with an accuracy of 98% and a Dice coefficient of 0.97. Compared with industry experts, the model achieved accuracies of 92.5% and 91.2% for the BPD and HC measurements, respectively. Deep learning models can enhance prenatal diagnosis workflows, especially in resource-constrained settings. Future work needs to be done on optimizing model performance, trying complex models, and expanding datasets to improve generalizability. If these technologies are adopted, they can be used in prenatal care delivery. Not applicable.

Auto-segmentation of cerebral cavernous malformations using a convolutional neural network.

Chou CJ, Yang HC, Lee CC, Jiang ZH, Chen CJ, Wu HM, Lin CF, Lai IC, Peng SJ

pubmed logopapersMay 26 2025
This paper presents a deep learning model for the automated segmentation of cerebral cavernous malformations (CCMs). The model was trained using treatment planning data from 199 Gamma Knife (GK) exams, comprising 171 cases with a single CCM and 28 cases with multiple CCMs. The training data included initial MRI images with target CCM regions manually annotated by neurosurgeons. For the extraction of data related to the brain parenchyma, we employed a mask region-based convolutional neural network (Mask R-CNN). Subsequently, this data was processed using a 3D convolutional neural network known as DeepMedic. The efficacy of the brain parenchyma extraction model was demonstrated via five-fold cross-validation, resulting in an average Dice similarity coefficient of 0.956 ± 0.002. The segmentation models used for CCMs achieved average Dice similarity coefficients of 0.741 ± 0.028 based solely on T2W images. The Dice similarity coefficients for the segmentation of CCMs types were as follows: Zabramski Classification type I (0.743), type II (0.742), and type III (0.740). We also developed a user-friendly graphical user interface to facilitate the use of these models in clinical analysis. This paper presents a deep learning model for the automated segmentation of CCMs, demonstrating sufficient performance across various Zabramski classifications. not applicable.

A novel MRI-based deep learning imaging biomarker for comprehensive assessment of the lenticulostriate artery-neural complex.

Song Y, Jin Y, Wei J, Wang J, Zheng Z, Wang Y, Zeng R, Lu W, Huang B

pubmed logopapersMay 26 2025
To develop a deep learning network for extracting features from the blood-supplying regions of the lenticulostriate artery (LSA) and to establish these features as an imaging biomarker for the comprehensive assessment of the lenticulostriate artery-neural complex (LNC). Automatic segmentation of brain regions on T1-weighted images was performed, followed by the development of the ResNet18 framework to extract and visualize deep learning features from three regions of interest (ROIs). The root mean squared error (RMSE) was then used to assess the correlation between these features and fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and cerebral blood flow (CBF) values from arterial spin labeling (ASL). The correlation of these features with LSA root numbers and three disease categories was further validated using fine-tuning classification (Task1 and Task2). Seventy-nine patients were enrolled and classified into three groups. No significant differences were found in the number of LSA roots between the right and left hemispheres, nor in the FA and CBF values of the ROIs. The RMSE loss, relative to the mean FA and CBF values across different ROI inputs, ranged from 0.154 to 0.213%. The model's accuracy in Task1 and Task2 fine-tuning classification reached 100%. Deep learning features extracted from the basal ganglia nuclei effectively reflect cerebrovascular and neurological functions and reveal the damage status of the LSA. This approach holds promise as a novel imaging biomarker for the comprehensive assessment of the LNC.

Clinical, radiological, and radiomics feature-based explainable machine learning models for prediction of neurological deterioration and 90-day outcomes in mild intracerebral hemorrhage.

Zeng W, Chen J, Shen L, Xia G, Xie J, Zheng S, He Z, Deng L, Guo Y, Yang J, Lv Y, Qin G, Chen W, Yin J, Wu Q

pubmed logopapersMay 26 2025
The risks and prognosis of mild intracerebral hemorrhage (ICH) patients were easily overlooked by clinicians. Our goal was to use machine learning (ML) methods to predict mild ICH patients' neurological deterioration (ND) and 90-day prognosis. This prospective study recruited 257 patients with mild ICH for this study. After exclusions, 148 patients were included in the ND study and 144 patients in the 90-day prognosis study. We trained five ML models using filtered data, including clinical, traditional imaging, and radiomics indicators based on non-contrast computed tomography (NCCT). Additionally, we incorporated the Shapley Additive Explanation (SHAP) method to display key features and visualize the decision-making process of the model for each individual. A total of 21 (14.2%) mild ICH patients developed ND, and 35 (24.3%) mild ICH patients had a 90-day poor prognosis. In the validation set, the support vector machine (SVM) models achieved an AUC of 0.846 (95% confidence intervals (CI), 0.627-1.000) and an F1-score of 0.667 for predicting ND, and an AUC of 0.970 (95% CI, 0.928-1.000), and an F1-score of 0.846 for predicting 90-day prognosis. The SHAP analysis results indicated that several clinical features, the island sign, and the radiomics features of the hematoma were of significant value in predicting ND and 90-day prognosis. The ML models, constructed using clinical, traditional imaging, and radiomics indicators, demonstrated good classification performance in predicting ND and 90-day prognosis in patients with mild ICH, and have the potential to serve as an effective tool in clinical practice. Not applicable.

Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Li L, Yang D, Wu Y, Sun R, Qin Y, Kang M, Deng X, Bu M, Li Z, Zeng Z, Zeng X, Jiang M, Chen BT

pubmed logopapersMay 26 2025
To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (NPC). This prospective single-center study enrolled patients with NPC and the study assessment included both DECT and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Radiomics features were extracted from each region of interest (ROI) for cervical lymph nodes using arterial and venous phase images at 100 keV and 150 keV, either individually as non-fusion models or combined as fusion models on the DECT images. The performance of the random forest (RF) models, combined with radiomics features, was evaluated by area under the receiver operating characteristic curve (AUC) analysis. DeLong's test was employed to compare model performances, while decision curve analysis (DCA) assessed the clinical utility of the predictive models. Sixty-six patients with NPC were included for analysis, which was divided into a training set (n = 42) and a validation set (n = 22). A total of 13 radiomic models were constructed (4 non-fusion models and 9 fusion models). In the non-fusion models, when the threshold value exceeded 0.4, the venous phase at 100 keV (V100) (AUC, 0.9667; 95 % confidence interval [95 % CI], 0.9363-0.9901) model exhibited a higher net benefit than other non-fusion models. The V100 + V150 fusion model achieved the best performance, with an AUC of 0.9697 (95 % CI, 0.9393-0.9907). DECT-based radiomics effectively diagnosed CLNM in patients with NPC and may potentially be a valuable tool for clinical decision-making. This study improved pre-operative evaluation, treatment strategy selection, and prognostic evaluation for patients with nasopharyngeal carcinoma by combining DECT and radiomics to predict cervical lymph node status prior to treatment.

Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan.

Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N

pubmed logopapersMay 25 2025
To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.

Sex-related differences and associated transcriptional signatures in the brain ventricular system and cerebrospinal fluid development in full-term neonates.

Sun Y, Fu C, Gu L, Zhao H, Feng Y, Jin C

pubmed logopapersMay 25 2025
The cerebrospinal fluid (CSF) is known to serve as a unique environment for neurodevelopment, with specific proteins secreted by epithelial cells of the choroid plexus (CP) playing crucial roles in cortical development and cell differentiation. Sex-related differences in the brain in early life have been widely identified, but few studies have investigated the neonatal CSF system and associated transcriptional signatures. This study included 75 full-term neonates [44 males and 31 females; gestational age (GA) = 37-42 weeks] without significant MRI abnormalities from the dHCP (developing Human Connectome Project) database. Deep-learning automated segmentation was used to measure various metrics of the brain ventricular system and CSF. Sex-related differences and relationships with postnatal age were analyzed by linear regression. Correlations between the CP and CSF space metrics were also examined. LASSO regression was further applied to identify the key genes contributing to the sex-related CSF system differences by using regional gene expression data from the Allen Human Brain Atlas. Right lateral ventricles [2.42 ± 0.98 vs. 2.04 ± 0.45 cm3 (mean ± standard deviation), p = 0.036] and right CP (0.16 ± 0.07 vs. 0.13 ± 0.04 cm3, p = 0.024) were larger in males, with a stronger volume correlation (male/female correlation coefficients r: 0.798 vs. 0.649, p < 1 × 10<sup>- 4</sup>). No difference was found in total CSF volume, while peripheral CSF (male/female β: 1.218 vs. 1.064) and CP (male/female β: 0.008 vs. 0.005) exhibited relatively faster growth in males. Additionally, the volumes of the lateral ventricular system, third ventricle, peripheral CSF, and total CSF were significantly correlated with their corresponding CP volume (r: 0.362 to 0.799, p < 0.05). DERL2 (Degradation in Endoplasmic Reticulum Protein 2) (r = 0.1319) and MRPL48 (Mitochondrial Large Ribosomal Subunit Protein) (r=-0.0370) were identified as potential key genes associated with sex-related differences in CSF system. Male neonates present larger volumes and faster growth of the right lateral ventricle, likely linked to corresponding CP volume and growth pattern. The downregulation of DERL2 and upregulation of MRPL48 may contribute to these sex-related variations in the CSF system, suggesting a molecular basis for sex-specific brain development.

Distinct brain age gradients across the adult lifespan reflect diverse neurobiological hierarchies.

Riccardi N, Teghipco A, Newman-Norlund S, Newman-Norlund R, Rangus I, Rorden C, Fridriksson J, Bonilha L

pubmed logopapersMay 25 2025
'Brain age' is a biological clock typically used to describe brain health with one number, but its relationship with established gradients of cortical organization remains unclear. We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. Six distinct gradients of brain aging are replicated in two independent cohorts. Spatial patterns of accelerated brain aging in older adults quantitatively align with the archetypal sensorimotor-to-association axis of cortical organization. Other brain aging gradients reflect neurobiological hierarchies such as gene expression and externopyramidization. Participant-level correspondences to brain age gradients are associated with cognitive and sensorimotor performance and explained behavioral variance more effectively than global brain age. These results suggest that regional brain age patterns reflect fundamental principles of cortical organization and behavior.

Classifying athletes and non-athletes by differences in spontaneous brain activity: a machine learning and fMRI study.

Peng L, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Peng Z, Xu R, Shao Y

pubmed logopapersMay 24 2025
Different types of sports training can induce distinct changes in brain activity and function; however, it remains unclear if there are commonalities across various sports disciplines. Moreover, the relationship between these brain activity alterations and the duration of sports training requires further investigation. This study employed resting-state functional magnetic resonance imaging (rs-fMRI) techniques to analyze spontaneous brain activity using the amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in 86 highly trained athletes compared to 74 age- and gender-matched non-athletes. Our findings revealed significantly higher ALFF values in the Insula_R (Right Insula), OFCpost_R (Right Posterior orbital gyrus), and OFClat_R (Right Lateral orbital gyrus) in athletes compared to controls, whereas fALFF in the Postcentral_R (Right Postcentral) was notably higher in controls. Additionally, we identified a significant negative correlation between fALFF values in the Postcentral_R of athletes and their years of professional training. Utilizing machine learning algorithms, we achieved accurate classification of brain activity patterns distinguishing athletes from non-athletes with over 96.97% accuracy. These results suggest that the functional reorganization observed in athletes' brains may signify an adaptation to prolonged training, potentially reflecting enhanced processing efficiency. This study emphasizes the importance of examining the impact of long-term sports training on brain function, which could influence cognitive and sensory systems crucial for optimal athletic performance. Furthermore, machine learning methods could be used in the future to select athletes based on differences in brain activity.
Page 75 of 91902 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.