Sort by:
Page 71 of 81804 results

Deep learning radiopathomics based on pretreatment MRI and whole slide images for predicting over survival in locally advanced nasopharyngeal carcinoma.

Yi X, Yu X, Li C, Li J, Cao H, Lu Q, Li J, Hou J

pubmed logopapersMay 21 2025
To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients. A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions. The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups. n: The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.

Domain Adaptive Skin Lesion Classification via Conformal Ensemble of Vision Transformers

Mehran Zoravar, Shadi Alijani, Homayoun Najjaran

arxiv logopreprintMay 21 2025
Exploring the trustworthiness of deep learning models is crucial, especially in critical domains such as medical imaging decision support systems. Conformal prediction has emerged as a rigorous means of providing deep learning models with reliable uncertainty estimates and safety guarantees. However, conformal prediction results face challenges due to the backbone model's struggles in domain-shifted scenarios, such as variations in different sources. To aim this challenge, this paper proposes a novel framework termed Conformal Ensemble of Vision Transformers (CE-ViTs) designed to enhance image classification performance by prioritizing domain adaptation and model robustness, while accounting for uncertainty. The proposed method leverages an ensemble of vision transformer models in the backbone, trained on diverse datasets including HAM10000, Dermofit, and Skin Cancer ISIC datasets. This ensemble learning approach, calibrated through the combined mentioned datasets, aims to enhance domain adaptation through conformal learning. Experimental results underscore that the framework achieves a high coverage rate of 90.38\%, representing an improvement of 9.95\% compared to the HAM10000 model. This indicates a strong likelihood that the prediction set includes the true label compared to singular models. Ensemble learning in CE-ViTs significantly improves conformal prediction performance, increasing the average prediction set size for challenging misclassified samples from 1.86 to 3.075.

Customized GPT-4V(ision) for radiographic diagnosis: can large language model detect supernumerary teeth?

Aşar EM, İpek İ, Bi Lge K

pubmed logopapersMay 21 2025
With the growing capabilities of language models like ChatGPT to process text and images, this study evaluated their accuracy in detecting supernumerary teeth on periapical radiographs. A customized GPT-4V model (CGPT-4V) was also developed to assess whether domain-specific training could improve diagnostic performance compared to standard GPT-4V and GPT-4o models. One hundred eighty periapical radiographs (90 with and 90 without supernumerary teeth) were evaluated using GPT-4 V, GPT-4o, and a fine-tuned CGPT-4V model. Each image was assessed separately with the standardized prompt "Are there any supernumerary teeth in the radiograph above?" to avoid contextual bias. Three dental experts scored the responses using a three-point Likert scale for positive cases and a binary scale for negatives. Chi-square tests and ROC analysis were used to compare model performances (p < 0.05). Among the three models, CGPT-4 V exhibited the highest accuracy, detecting supernumerary teeth correctly in 91% of cases, compared to 77% for GPT-4o and 63% for GPT-4V. The CGPT-4V model also demonstrated a significantly lower false positive rate (16%) than GPT-4V (42%). A statistically significant difference was found between CGPT-4V and GPT-4o (p < 0.001), while no significant difference was observed between GPT-4V and CGPT-4V or between GPT-4V and GPT-4o. Additionally, CGPT-4V successfully identified multiple supernumerary teeth in radiographs where present. These findings highlight the diagnostic potential of customized GPT models in dental radiology. Future research should focus on multicenter validation, seamless clinical integration, and cost-effectiveness to support real-world implementation.

SAMA-UNet: Enhancing Medical Image Segmentation with Self-Adaptive Mamba-Like Attention and Causal-Resonance Learning

Saqib Qamar, Mohd Fazil, Parvez Ahmad, Ghulam Muhammad

arxiv logopreprintMay 21 2025
Medical image segmentation plays an important role in various clinical applications, but existing models often struggle with the computational inefficiencies and challenges posed by complex medical data. State Space Sequence Models (SSMs) have demonstrated promise in modeling long-range dependencies with linear computational complexity, yet their application in medical image segmentation remains hindered by incompatibilities with image tokens and autoregressive assumptions. Moreover, it is difficult to achieve a balance in capturing both local fine-grained information and global semantic dependencies. To address these challenges, we introduce SAMA-UNet, a novel architecture for medical image segmentation. A key innovation is the Self-Adaptive Mamba-like Aggregated Attention (SAMA) block, which integrates contextual self-attention with dynamic weight modulation to prioritise the most relevant features based on local and global contexts. This approach reduces computational complexity and improves the representation of complex image features across multiple scales. We also suggest the Causal-Resonance Multi-Scale Module (CR-MSM), which enhances the flow of information between the encoder and decoder by using causal resonance learning. This mechanism allows the model to automatically adjust feature resolution and causal dependencies across scales, leading to better semantic alignment between the low-level and high-level features in U-shaped architectures. Experiments on MRI, CT, and endoscopy images show that SAMA-UNet performs better in segmentation accuracy than current methods using CNN, Transformer, and Mamba. The implementation is publicly available at GitHub.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

ÆMMamba: An Efficient Medical Segmentation Model With Edge Enhancement.

Dong X, Zhou B, Yin C, Liao IY, Jin Z, Xu Z, Pu B

pubmed logopapersMay 21 2025
Medical image segmentation is critical for disease diagnosis, treatment planning, and prognosis assessment, yet the complexity and diversity of medical images pose significant challenges to accurate segmentation. While Convolutional Neural Networks capture local features and Vision Transformers excel in the global context, both struggle with efficient long-range dependency modeling. Inspired by Mamba's State Space Modeling efficiency, we propose ÆMMamba, a novel multi-scale feature extraction framework built on the Mamba backbone network. AÆMMamba integrates several innovative modules: the Efficient Fusion Bridge (EFB) module, which employs a bidirectional state-space model and attention mechanisms to fuse multi-scale features; the Edge-Aware Module (EAM), which enhances low-level edge representation using Sobel-based edge extraction; and the Boundary Sensitive Decoder (BSD), which leverages inverse attention and residual convolutional layers to handle cross-level complex boundaries. ÆMMamba achieves state-of-the-art performance across 8 medical segmentation datasets. On polyp segmentation datasets (Kvasir, ClinicDB, ColonDB, EndoScene, ETIS), it records the highest mDice and mIoU scores, outperforming methods like MADGNet and Swin-UMamba, with a standout mDice of 72.22 on ETIS, the most challenging dataset in this domain. For lung and breast segmentation, ÆMMamba surpasses competitors such as H2Former and SwinUnet, achieving Dice scores of 84.24 on BUSI and 79.83 on COVID-19 Lung. And on the LGG brain MRI dataset, ÆMMamba attains an mDice of 87.25 and an mIoU of 79.31, outperforming all compared methods. The source code will be released at https://github.com/xingbod/eMMamba.

MedBLIP: Fine-tuning BLIP for Medical Image Captioning

Manshi Limbu, Diwita Banerjee

arxiv logopreprintMay 20 2025
Medical image captioning is a challenging task that requires generating clinically accurate and semantically meaningful descriptions of radiology images. While recent vision-language models (VLMs) such as BLIP, BLIP2, Gemini and ViT-GPT2 show strong performance on natural image datasets, they often produce generic or imprecise captions when applied to specialized medical domains. In this project, we explore the effectiveness of fine-tuning the BLIP model on the ROCO dataset for improved radiology captioning. We compare the fine-tuned BLIP against its zero-shot version, BLIP-2 base, BLIP-2 Instruct and a ViT-GPT2 transformer baseline. Our results demonstrate that domain-specific fine-tuning on BLIP significantly improves performance across both quantitative and qualitative evaluation metrics. We also visualize decoder cross-attention maps to assess interpretability and conduct an ablation study to evaluate the contributions of encoder-only and decoder-only fine-tuning. Our findings highlight the importance of targeted adaptation for medical applications and suggest that decoder-only fine-tuning (encoder-frozen) offers a strong performance baseline with 5% lower training time than full fine-tuning, while full model fine-tuning still yields the best results overall.

CONSIGN: Conformal Segmentation Informed by Spatial Groupings via Decomposition

Bruno Viti, Elias Karabelas, Martin Holler

arxiv logopreprintMay 20 2025
Most machine learning-based image segmentation models produce pixel-wise confidence scores - typically derived from softmax outputs - that represent the model's predicted probability for each class label at every pixel. While this information can be particularly valuable in high-stakes domains such as medical imaging, these (uncalibrated) scores are heuristic in nature and do not constitute rigorous quantitative uncertainty estimates. Conformal prediction (CP) provides a principled framework for transforming heuristic confidence scores into statistically valid uncertainty estimates. However, applying CP directly to image segmentation ignores the spatial correlations between pixels, a fundamental characteristic of image data. This can result in overly conservative and less interpretable uncertainty estimates. To address this, we propose CONSIGN (Conformal Segmentation Informed by Spatial Groupings via Decomposition), a CP-based method that incorporates spatial correlations to improve uncertainty quantification in image segmentation. Our method generates meaningful prediction sets that come with user-specified, high-probability error guarantees. It is compatible with any pre-trained segmentation model capable of generating multiple sample outputs - such as those using dropout, Bayesian modeling, or ensembles. We evaluate CONSIGN against a standard pixel-wise CP approach across three medical imaging datasets and two COCO dataset subsets, using three different pre-trained segmentation models. Results demonstrate that accounting for spatial structure significantly improves performance across multiple metrics and enhances the quality of uncertainty estimates.

Detection of maxillary sinus pathologies using deep learning algorithms.

Aktuna Belgin C, Kurbanova A, Aksoy S, Akkaya N, Orhan K

pubmed logopapersMay 20 2025
Deep learning, a subset of machine learning, is widely utilized in medical applications. Identifying maxillary sinus pathologies before surgical interventions is crucial for ensuring successful treatment outcomes. Cone beam computed tomography (CBCT) is commonly employed for maxillary sinus evaluations due to its high resolution and lower radiation exposure. This study aims to assess the accuracy of artificial intelligence (AI) algorithms in detecting maxillary sinus pathologies from CBCT scans. A dataset comprising 1000 maxillary sinuses (MS) from 500 patients was analyzed using CBCT. Sinuses were categorized based on the presence or absence of pathology, followed by segmentation of the maxillary sinus. Manual segmentation masks were generated using the semiautomatic software ITK-SNAP, which served as a reference for comparison. A convolutional neural network (CNN)-based machine learning model was then implemented to automatically segment maxillary sinus pathologies from CBCT images. To evaluate segmentation accuracy, metrics such as the Dice similarity coefficient (DSC) and intersection over union (IoU) were utilized by comparing AI-generated results with human-generated segmentations. The automated segmentation model achieved a Dice score of 0.923, a recall of 0.979, an IoU of 0.887, an F1 score of 0.970, and a precision of 0.963. This study successfully developed an AI-driven approach for segmenting maxillary sinus pathologies in CBCT images. The findings highlight the potential of this method for rapid and accurate clinical assessment of maxillary sinus conditions using CBCT imaging.
Page 71 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.