Ajanovic S, Jobst B, Jiménez J, Quesada R, Santos F, Carandell F, Lopez-Azorín M, Valverde E, Ybarra M, Bravo MC, Petrone P, Sial H, Muñoz D, Agut T, Salas B, Carreras N, Alarcón A, Iriondo M, Luaces C, Sidat M, Zandamela M, Rodrigues P, Graça D, Ngovene S, Bramugy J, Cossa A, Mucasse C, Buck WC, Arias S, El Abbass C, Tligi H, Barkat A, Ibáñez A, Parrilla M, Elvira L, Calvo C, Pellicer A, Cabañas F, Bassat Q
Meningitis diagnosis requires a lumbar puncture (LP) to obtain cerebrospinal fluid (CSF) for a laboratory-based analysis. In high-income settings, LPs are part of the systematic approach to screen for meningitis, and most yield negative results. In low- and middle-income settings, LPs are seldom performed, and suspected cases are often treated empirically. The aim of this study was to validate a non-invasive transfontanellar white blood cell (WBC) counter in CSF to screen for meningitis. We conducted a prospective study across three Spanish hospitals, one Mozambican and one Moroccan hospital (2020-2023). We included patients under 24 months with suspected meningitis, an open fontanelle, and a LP performed within 24 h from recruitment. High-resolution-ultrasound (HRUS) images of the CSF were obtained using a customized probe. A deep-learning model was trained to classify CSF patterns based on LPs WBC counts, using a 30cells/mm<sup>3</sup> threshold. The algorithm was applied to 3782 images from 76 patients. It correctly classified 17/18 CSFs with <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo></math> 30 WBC, and 55/58 controls (sensitivity 94.4%, specificity 94.8%). The only false negative was paired to a traumatic LP with 40 corrected WBC/mm<sup>3</sup>. This non-invasive device could be an accurate tool for screening meningitis in neonates and young infants, modulating LP indications. Our non-invasive, high-resolution ultrasound device achieved 94% accuracy in detecting elevated leukocyte counts in neonates and infants with suspected meningitis, compared to the gold standard (lumbar punctures and laboratory analysis). This first-in-class screening device introduces the first non-invasive method for neonatal and infant meningitis screening, potentially modulating lumbar puncture indications. This technology could substantially reduce lumbar punctures in low-suspicion cases and provides a viable alternative critically ill patients worldwide or in settings where lumbar punctures are unfeasible, especially in low-income countries).