Sort by:
Page 63 of 100991 results

Thin-slice T<sub>2</sub>-weighted images and deep-learning-based super-resolution reconstruction: improved preoperative assessment of vascular invasion for pancreatic ductal adenocarcinoma.

Zhou X, Wu Y, Qin Y, Song C, Wang M, Cai H, Zhao Q, Liu J, Wang J, Dong Z, Luo Y, Peng Z, Feng ST

pubmed logopapersJun 30 2025
To evaluate the efficacy of thin-slice T<sub>2</sub>-weighted imaging (T<sub>2</sub>WI) and super-resolution reconstruction (SRR) for preoperative assessment of vascular invasion in pancreatic ductal adenocarcinoma (PDAC). Ninety-five PDACs with preoperative MRI were retrospectively enrolled as a training set, with non-reconstructed T<sub>2</sub>WI (NRT<sub>2</sub>) in different slice thicknesses (NRT<sub>2</sub>-3, 3 mm; NRT<sub>2</sub>-5, ≥ 5 mm). A prospective test set was collected with NRT<sub>2</sub>-5 (n = 125) only. A deep-learning network was employed to generate reconstructed super-resolution T<sub>2</sub>WI (SRT<sub>2</sub>) in different slice thicknesses (SRT<sub>2</sub>-3, 3 mm; SRT<sub>2</sub>-5, ≥ 5 mm). Image quality was assessed, including the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal-intensity ratio (SIR<sub>t/p</sub>, tumor/pancreas; SIR<sub>t/b</sub>, tumor/background). Diagnostic efficacy for vascular invasion was evaluated using the area under the curve (AUC) and compared across different slice thicknesses before and after reconstruction. SRT<sub>2</sub>-5 demonstrated higher SNR and SIR<sub>t/p</sub> compared to NRT<sub>2</sub>-5 (74.18 vs 72.46; 1.42 vs 1.30; p < 0.05). SRT<sub>2</sub>-3 showed increased SIR<sub>t/p</sub> and SIR<sub>t/b</sub> over NRT<sub>2</sub>-3 (1.35 vs 1.31; 2.73 vs 2.58; p < 0.05). SRT<sub>2</sub>-5 showed higher CNR, SIR<sub>t/p</sub> and SIR<sub>t/b</sub> than NRT<sub>2</sub>-3 (p < 0.05). NRT<sub>2</sub>-3 outperformed NRT<sub>2</sub>-5 in evaluating venous invasion (AUC: 0.732 vs 0.597, p = 0.021). SRR improved venous assessment (AUC: NRT<sub>2</sub>-3, 0.927 vs 0.732; NRT<sub>2</sub>-5, 0.823 vs 0.597; p < 0.05), and SRT<sub>2</sub>-5 exhibits comparable efficacy to NRT<sub>2</sub>-3 in venous assessment (AUC: 0.823 vs 0.732, p = 0.162). Thin-slice T<sub>2</sub>WI and SRR effectively improve the image quality and diagnostic efficacy for assessing venous invasion in PDAC. Thick-slice T<sub>2</sub>WI with SRR is a potential alternative to thin-slice T<sub>2</sub>WI. Both thin-slice T<sub>2</sub>-WI and SRR effectively improve image quality and diagnostic performance, providing valuable options for optimizing preoperative vascular assessment in PDAC. Non-invasive and accurate assessment of vascular invasion supports treatment planning and avoids futile surgery. Vascular invasion evaluation is critical for the surgical eligibility of PDAC. SRR improved image quality and vascular assessment in T<sub>2</sub>WI. Utilizing thin-slice T<sub>2</sub>WI and SRR aids in clinical decision making for PDAC.

CMT-FFNet: A CMT-based feature-fusion network for predicting TACE treatment response in hepatocellular carcinoma.

Wang S, Zhao Y, Cai X, Wang N, Zhang Q, Qi S, Yu Z, Liu A, Yao Y

pubmed logopapersJun 30 2025
Accurately and preoperatively predicting tumor response to transarterial chemoembolization (TACE) treatment is crucial for individualized treatment decision-making hepatocellular carcinoma (HCC). In this study, we propose a novel feature fusion network based on the Convolutional Neural Networks Meet Vision Transformers (CMT) architecture, termed CMT-FFNet, to predict TACE efficacy using preoperative multiphase Magnetic Resonance Imaging (MRI) scans. The CMT-FFNet combines local feature extraction with global dependency modeling through attention mechanisms, enabling the extraction of complementary information from multiphase MRI data. Additionally, we introduce an orthogonality loss to optimize the fusion of imaging and clinical features, further enhancing the complementarity of cross-modal features. Moreover, visualization techniques were employed to highlight key regions contributing to model decisions. Extensive experiments were conducted to evaluate the effectiveness of the proposed modules and network architecture. Experimental results demonstrate that our model effectively captures latent correlations among features extracted from multiphase MRI data and multimodal inputs, significantly improving the prediction performance of TACE treatment response in HCC patients.

Prediction Crohn's Disease Activity Using Computed Tomography Enterography-Based Radiomics and Serum Markers.

Wang P, Liu Y, Wang Y

pubmed logopapersJun 30 2025
Accurate stratification of the activity index of Crohn's disease (CD) using computed tomography enterography (CTE) radiomics and serum markers can aid in predicting disease progression and assist physicians in personalizing therapeutic regimens for patients with CD. This retrospective study enrolled 233 patients diagnosed with CD between January 2019 and August 2024. Patients were divided into training and testing cohorts at a ratio of 7:3 and further categorized into remission, mild active phase, and moderate-severe active phase groups based on simple endoscopic score for CD (SEC-CD). Radiomics features were extracted from CTE venous images, and T-test and least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The serum markers were selected based on the variance analysis. We also developed a random forest (RF) model for multi-class stratification of CD. The model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and quantified the contribution of each feature in the dataset to CD activity via Shapley additive exPlanations (SHAP) values. Finally, we enrolled gender, radiomics scores, and serum scores to develop a nomogram model to verify the effectiveness of feature extraction. 14 non-zero coefficient radiomics features and six serum markers with significant differences (P<0.01) were ultimately selected to predict CD activity. The AUC (micro/macro) for the ensemble machine learning model combining the radiomics features and serum markers is 0.931/0.928 for three-class. The AUC for the remission phase, the mild active phase, and the moderate-severe active phase were 0.983, 0.852, and 0.917, respectively. The mean AUC for the nomogram model was 0.940. A radiomics model was developed by integrating radiomics and serum markers of CD patients, achieving enhanced consistency with SEC-CD in grade CD. This model has the potential to assist clinicians in accurate diagnosis and treatment.

A Hierarchical Slice Attention Network for Appendicitis Classification in 3D CT Scans

Chia-Wen Huang, Haw Hwai, Chien-Chang Lee, Pei-Yuan Wu

arxiv logopreprintJun 29 2025
Timely and accurate diagnosis of appendicitis is critical in clinical settings to prevent serious complications. While CT imaging remains the standard diagnostic tool, the growing number of cases can overwhelm radiologists, potentially causing delays. In this paper, we propose a deep learning model that leverages 3D CT scans for appendicitis classification, incorporating Slice Attention mechanisms guided by external 2D datasets to enhance small lesion detection. Additionally, we introduce a hierarchical classification framework using pre-trained 2D models to differentiate between simple and complicated appendicitis. Our approach improves AUC by 3% for appendicitis and 5.9% for complicated appendicitis, offering a more efficient and reliable diagnostic solution compared to previous work.

Prognostic value of body composition out of PSMA-PET/CT in prostate cancer patients undergoing PSMA-therapy.

Roll W, Plagwitz L, Ventura D, Masthoff M, Backhaus C, Varghese J, Rahbar K, Schindler P

pubmed logopapersJun 28 2025
This retrospective study aims to develop a deep learning-based approach to whole-body CT segmentation out of standard PSMA-PET-CT to assess body composition in metastatic castration resistant prostate cancer (mCRPC) patients prior to [<sup>177</sup>Lu]Lu-PSMA radioligand therapy (RLT). Our goal is to go beyond standard PSMA-PET-based pretherapeutic assessment and identify additional body composition metrics out of the CT-component, with potential prognostic value. We used a deep learning segmentation model to perform fully automated segmentation of different tissue compartments, including visceral- (VAT), subcutaneous- (SAT), intra/intermuscular- adipose tissue (IMAT) from [<sup>68</sup> Ga]Ga-PSMA-PET-CT scans of n = 86 prostate cancer patients before RLT. The proportions of different adipose tissue compartments to total adipose tissue (TAT) assessed on a 3D CT-volume of the abdomen or on a 2D single slice basis (centered at third lumbal vertebra (L3)) were compared for their prognostic value. First, univariate and multivariate Cox proportional hazards regression analyses were performed. Subsequently, the subjects were dichotomized at the median tissue composition, and these subgroups were evaluated by Kaplan-Meier analysis with the log-rank test. The automated segmentation model was useful for delineating different adipose tissue compartments and skeletal muscle across different patient anatomies. Analyses revealed significant correlations between lower SAT and higher IMAT ratios and poorer therapeutic outcomes in Cox regression analysis (SAT/TAT: p = 0.038; IMAT/TAT: p < 0.001) in the 3D model. In the single slice approach only IMAT/SAT was significantly associated with survival in Cox regression analysis (p < 0.001; SAT/TAT: p > 0.05). IMAT ratio remained an independent predictor of survival in multivariate analysis when including PSMA-PET and blood-based prognostic factors. In this proof-of-principle study the implementation of a deep learning-based whole-body analysis provides a robust and detailed CT-based assessment of body composition in mCRPC patients undergoing RLT. Potential prognostic parameters have to be corroborated in larger prospective datasets.

Automated Evaluation of Female Pelvic Organ Descent on Transperineal Ultrasound: Model Development and Validation.

Wu S, Wu J, Xu Y, Tan J, Wang R, Zhang X

pubmed logopapersJun 28 2025
Transperineal ultrasound (TPUS) is a widely used tool for evaluating female pelvic organ prolapse (POP), but its accurate interpretation relies on experience, causing diagnostic variability. This study aims to develop and validate a multi-task deep learning model to automate POP assessment using TPUS images. TPUS images from 1340 female patients (January-June 2023) were evaluated by two experienced physicians. The presence and severity of cystocele, uterine prolapse, rectocele, and excessive mobility of perineal body (EMoPB) were documented. After preprocessing, 1072 images were used for training and 268 for validation. The model used ResNet34 as the feature extractor and four parallel fully connected layers to predict the conditions. Model performance was assessed using confusion matrix and area under the curve (AUC). Gradient-weighted class activation mapping (Grad-CAM) visualized the model's focus areas. The model demonstrated strong diagnostic performance, with accuracies and AUC values as follows: cystocele, 0.869 (95% CI, 0.824-0.905) and 0.947 (95% CI, 0.930-0.962); uterine prolapse, 0.799 (95% CI, 0.746-0.842) and 0.931 (95% CI, 0.911-0.948); rectocele, 0.978 (95% CI, 0.952-0.990) and 0.892 (95% CI, 0.849-0.927); and EMoPB, 0.869 (95% CI, 0.824-0.905) and 0.942 (95% CI, 0.907-0.967). Grad-CAM heatmaps revealed that the model's focus areas were consistent with those observed by human experts. This study presents a multi-task deep learning model for automated POP assessment using TPUS images, showing promising efficacy and potential to benefit a broader population of women.

Non-contrast computed tomography radiomics model to predict benign and malignant thyroid nodules with lobe segmentation: A dual-center study.

Wang H, Wang X, Du YS, Wang Y, Bai ZJ, Wu D, Tang WL, Zeng HL, Tao J, He J

pubmed logopapersJun 28 2025
Accurate preoperative differentiation of benign and malignant thyroid nodules is critical for optimal patient management. However, conventional imaging modalities present inherent diagnostic limitations. To develop a non-contrast computed tomography-based machine learning model integrating radiomics and clinical features for preoperative thyroid nodule classification. This multicenter retrospective study enrolled 272 patients with thyroid nodules (376 thyroid lobes) from center A (May 2021-April 2024), using histopathological findings as the reference standard. The dataset was stratified into a training cohort (264 lobes) and an internal validation cohort (112 lobes). Additional prospective temporal (97 lobes, May-August 2024, center A) and external multicenter (81 lobes, center B) test cohorts were incorporated to enhance generalizability. Thyroid lobes were segmented along the isthmus midline, with segmentation reliability confirmed by an intraclass correlation coefficient (≥ 0.80). Radiomics feature extraction was performed using Pearson correlation analysis followed by least absolute shrinkage and selection operator regression with 10-fold cross-validation. Seven machine learning algorithms were systematically evaluated, with model performance quantified through the area under the receiver operating characteristic curve (AUC), Brier score, decision curve analysis, and DeLong test for comparison with radiologists interpretations. Model interpretability was elucidated using SHapley Additive exPlanations (SHAP). The extreme gradient boosting model demonstrated robust diagnostic performance across all datasets, achieving AUCs of 0.899 [95% confidence interval (CI): 0.845-0.932] in the training cohort, 0.803 (95%CI: 0.715-0.890) in internal validation, 0.855 (95%CI: 0.775-0.935) in temporal testing, and 0.802 (95%CI: 0.664-0.939) in external testing. These results were significantly superior to radiologists assessments (AUCs: 0.596, 0.529, 0.558, and 0.538, respectively; <i>P</i> < 0.001 by DeLong test). SHAP analysis identified radiomic score, age, tumor size stratification, calcification status, and cystic components as key predictive features. The model exhibited excellent calibration (Brier scores: 0.125-0.144) and provided significant clinical net benefit at decision thresholds exceeding 20%, as evidenced by decision curve analysis. The non-contrast computed tomography-based radiomics-clinical fusion model enables robust preoperative thyroid nodule classification, with SHAP-driven interpretability enhancing its clinical applicability for personalized decision-making.

3D Auto-segmentation of pancreas cancer and surrounding anatomical structures for surgical planning.

Rhu J, Oh N, Choi GS, Kim JM, Choi SY, Lee JE, Lee J, Jeong WK, Min JH

pubmed logopapersJun 27 2025
This multicenter study aimed to develop a deep learning-based autosegmentation model for pancreatic cancer and surrounding anatomical structures using computed tomography (CT) to enhance surgical planning. We included patients with pancreatic cancer who underwent pancreatic surgery at three tertiary referral hospitals. A hierarchical Swin Transformer V2 model was implemented to segment the pancreas, pancreatic cancers, and peripancreatic structures from preoperative contrast-enhanced CT scans. Data was divided into training and internal validation sets at a 3:1 ratio (from one tertiary institution), with separately prepared external validation set (from two separate institutions). Segmentation performance was quantitatively assessed using the dice similarity coefficient (DSC) and qualitatively evaluated (complete vs partial vs absent). A total of 275 patients (51.6% male, mean age 65.8 ± 9.5 years) were included (176 training group, 59 internal validation group, and 40 external validation group). No significant differences in baseline characteristics were observed between the groups. The model achieved an overall mean DSC of 75.4 ± 6.0 and 75.6 ± 4.8 in the internal and external validation groups, respectively. It showed high accuracy particularly in the pancreas parenchyma (84.8 ± 5.3 and 86.1 ± 4.1) and lower accuracy in pancreatic cancer (57.0 ± 28.7 and 54.5 ± 23.5). The DSC scores for pancreatic cancer tended to increase with larger tumor sizes. Moreover, the qualitative assessments revealed high accuracy in the superior mesenteric artery (complete segmentation, 87.5%-100%), portal and superior mesenteric vein (97.5%-100%), pancreas parenchyma (83.1%-87.5%), but lower accuracy in cancers (62.7%-65.0%). The deep learning-based autosegmentation model for 3D visualization of pancreatic cancer and peripancreatic structures showed robust performance. Further improvement will enhance many promising applications in clinical research.

HGTL: A hypergraph transfer learning framework for survival prediction of ccRCC.

Han X, Li W, Zhang Y, Li P, Zhu J, Zhang T, Wang R, Gao Y

pubmed logopapersJun 27 2025
The clinical diagnosis of clear cell renal cell carcinoma (ccRCC) primarily depends on histopathological analysis and computed tomography (CT). Although pathological diagnosis is regarded as the gold standard, invasive procedures such as biopsy carry the risk of tumor dissemination. Conversely, CT scanning offers a non-invasive alternative, but its resolution may be inadequate for detecting microscopic tumor features, which limits the performance of prognostic assessments. To address this issue, we propose a high-order correlation-driven method for predicting the survival of ccRCC using only CT images, achieving performance comparable to that of the pathological gold standard. The proposed method utilizes a cross-modal hypergraph neural network based on hypergraph transfer learning to perform high-order correlation modeling and semantic feature extraction from whole-slide pathological images and CT images. By employing multi-kernel maximum mean discrepancy, we transfer the high-order semantic features learned from pathological images to the CT-based hypergraph neural network channel. During the testing phase, high-precision survival predictions were achieved using only CT images, eliminating the need for pathological images. This approach not only reduces the risks associated with invasive examinations for patients but also significantly enhances clinical diagnostic efficiency. The proposed method was validated using four datasets: three collected from different hospitals and one from the public TCGA dataset. Experimental results indicate that the proposed method achieves higher concordance indices across all datasets compared to other methods.

D<sup>2</sup>-RD-UNet: A dual-stage dual-class framework with connectivity correction for hepatic vessels segmentation.

Cavicchioli M, Moglia A, Garret G, Puglia M, Vacavant A, Pugliese G, Cerveri P

pubmed logopapersJun 27 2025
Accurate segmentation of hepatic and portal veins is critical for preoperative planning in liver surgery, especially for resection and transplantation procedures. Extensive anatomical variability, pathological alterations, and inherent class imbalance between background and vascular structures challenge this task. Current state-of-the-art deep learning approaches often fail to generalize across patient variability or maintain vascular topology, thus limiting their clinical applicability. To overcome these limitations, we propose the D<sup>2</sup>-RD-UNet, a dual-stage, dual-class segmentation framework for hepatic and portal vessels. The D<sup>2</sup>-RD-UNet architecture employs dense and residual connections to improve feature propagation and segmentation accuracy. Our D<sup>2</sup>-RD-UNet integrates advanced data-driven preprocessing, a dual-path architecture for 3D and 4D data, with the latter concatenating computed tomography (CT) scans with four relevant vesselness filters (Sato, Frangi, OOF, and RORPO). The pipeline is completed by the first developed postprocessing multi-class vessel connectivity correction algorithm based on centerlines. Additionally, we introduce the first radius-based branching algorithm to evaluate the model's predictions locally, providing detailed insights into the accuracy of vascular reconstructions at different scales. In order to make up for the scarcity of well-annotated open datasets for hepatic vessels segmentation, we curated AIMS-HPV-385, a large, pathological, multi-class, and validated dataset on 385 CT scans. We trained different configurations of D<sup>2</sup>-RD-UNet and state-of-the-art models on 327 CTs of AIMS-HPV-385. Experimental results on the remaining 58 CTs of AIMS-HPV-385 and on the 20 CTs of 3D-IRCADb-01 demonstrate superior performances of the D<sup>2</sup>-RD-UNet variants over state-of-the-art methods, achieving robust generalization, preserving vascular continuity, and offering a reliable approach for liver vascular reconstructions.
Page 63 of 100991 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.