Sort by:
Page 6 of 81804 results

MedAtlas: Evaluating LLMs for Multi-Round, Multi-Task Medical Reasoning Across Diverse Imaging Modalities and Clinical Text

Ronghao Xu, Zhen Huang, Yangbo Wei, Xiaoqian Zhou, Zikang Xu, Ting Liu, Zihang Jiang, S. Kevin Zhou

arxiv logopreprintAug 13 2025
Artificial intelligence has demonstrated significant potential in clinical decision-making; however, developing models capable of adapting to diverse real-world scenarios and performing complex diagnostic reasoning remains a major challenge. Existing medical multi-modal benchmarks are typically limited to single-image, single-turn tasks, lacking multi-modal medical image integration and failing to capture the longitudinal and multi-modal interactive nature inherent to clinical practice. To address this gap, we introduce MedAtlas, a novel benchmark framework designed to evaluate large language models on realistic medical reasoning tasks. MedAtlas is characterized by four key features: multi-turn dialogue, multi-modal medical image interaction, multi-task integration, and high clinical fidelity. It supports four core tasks: open-ended multi-turn question answering, closed-ended multi-turn question answering, multi-image joint reasoning, and comprehensive disease diagnosis. Each case is derived from real diagnostic workflows and incorporates temporal interactions between textual medical histories and multiple imaging modalities, including CT, MRI, PET, ultrasound, and X-ray, requiring models to perform deep integrative reasoning across images and clinical texts. MedAtlas provides expert-annotated gold standards for all tasks. Furthermore, we propose two novel evaluation metrics: Round Chain Accuracy and Error Propagation Resistance. Benchmark results with existing multi-modal models reveal substantial performance gaps in multi-stage clinical reasoning. MedAtlas establishes a challenging evaluation platform to advance the development of robust and trustworthy medical AI.

Quest for a clinically relevant medical image segmentation metric: the definition and implementation of Medical Similarity Index

Szuzina Fazekas, Bettina Katalin Budai, Viktor Bérczi, Pál Maurovich-Horvat, Zsolt Vizi

arxiv logopreprintAug 13 2025
Background: In the field of radiology and radiotherapy, accurate delineation of tissues and organs plays a crucial role in both diagnostics and therapeutics. While the gold standard remains expert-driven manual segmentation, many automatic segmentation methods are emerging. The evaluation of these methods primarily relies on traditional metrics that only incorporate geometrical properties and fail to adapt to various applications. Aims: This study aims to develop and implement a clinically relevant segmentation metric that can be adapted for use in various medical imaging applications. Methods: Bidirectional local distance was defined, and the points of the test contour were paired with points of the reference contour. After correcting for the distance between the test and reference center of mass, Euclidean distance was calculated between the paired points, and a score was given to each test point. The overall medical similarity index was calculated as the average score across all the test points. For demonstration, we used myoma and prostate datasets; nnUNet neural networks were trained for segmentation. Results: An easy-to-use, sustainable image processing pipeline was created using Python. The code is available in a public GitHub repository along with Google Colaboratory notebooks. The algorithm can handle multislice images with multiple masks per slice. Mask splitting algorithm is also provided that can separate the concave masks. We demonstrate the adaptability with prostate segmentation evaluation. Conclusions: A novel segmentation evaluation metric was implemented, and an open-access image processing pipeline was also provided, which can be easily used for automatic measurement of clinical relevance of medical image segmentation.}

A stacking ensemble framework integrating radiomics and deep learning for prognostic prediction in head and neck cancer.

Wang B, Liu J, Zhang X, Lin J, Li S, Wang Z, Cao Z, Wen D, Liu T, Ramli HRH, Harith HH, Hasan WZW, Dong X

pubmed logopapersAug 13 2025
Radiomics models frequently face challenges related to reproducibility and robustness. To address these issues, we propose a multimodal, multi-model fusion framework utilizing stacking ensemble learning for prognostic prediction in head and neck cancer (HNC). This approach seeks to improve the accuracy and reliability of survival predictions. A total of 806 cases from nine centers were collected; 143 cases from two centers were assigned as the external validation cohort, while the remaining 663 were stratified and randomly split into training (n = 530) and internal validation (n = 133) sets. Radiomics features were extracted according to IBSI standards, and deep learning features were obtained using a 3D DenseNet-121 model. Following feature selection, the selected features were input into Cox, SVM, RSF, DeepCox, and DeepSurv models. A stacking fusion strategy was employed to develop the prognostic model. Model performance was evaluated using Kaplan-Meier survival curves and time-dependent ROC curves. On the external validation set, the model using combined PET and CT radiomics features achieved superior performance compared to single-modality models, with the RSF model obtaining the highest concordance index (C-index) of 0.7302. When using deep features extracted by 3D DenseNet-121, the PET + CT-based models demonstrated significantly improved prognostic accuracy, with Deepsurv and DeepCox achieving C-indices of 0.9217 and 0.9208, respectively. In stacking models, the PET + CT model using only radiomics features reached a C-index of 0.7324, while the deep feature-based stacking model achieved 0.9319. The best performance was obtained by the multi-feature fusion model, which integrated both radiomics and deep learning features from PET and CT, yielding a C-index of 0.9345. Kaplan-Meier survival analysis further confirmed the fusion model's ability to distinguish between high-risk and low-risk groups. The stacking-based ensemble model demonstrates superior performance compared to individual machine learning models, markedly improving the robustness of prognostic predictions.

Comparative evaluation of CAM methods for enhancing explainability in veterinary radiography.

Dusza P, Banzato T, Burti S, Bendazzoli M, Müller H, Wodzinski M

pubmed logopapersAug 13 2025
Explainable Artificial Intelligence (XAI) encompasses a broad spectrum of methods that aim to enhance the transparency of deep learning models, with Class Activation Mapping (CAM) methods widely used for visual interpretability. However, systematic evaluations of these methods in veterinary radiography remain scarce. This study presents a comparative analysis of eleven CAM methods, including GradCAM, XGradCAM, ScoreCAM, and EigenCAM, on a dataset of 7362 canine and feline X-ray images. A ResNet18 model was chosen based on the specificity of the dataset and preliminary results where it outperformed other models. Quantitative and qualitative evaluations were performed to determine how well each CAM method produced interpretable heatmaps relevant to clinical decision-making. Among the techniques evaluated, EigenGradCAM achieved the highest mean score and standard deviation (SD) of 2.571 (SD = 1.256), closely followed by EigenCAM at 2.519 (SD = 1.228) and GradCAM++ at 2.512 (SD = 1.277), with methods such as FullGrad and XGradCAM achieving worst scores of 2.000 (SD = 1.300) and 1.858 (SD = 1.198) respectively. Despite variations in saliency visualization, no single method universally improved veterinarians' diagnostic confidence. While certain CAM methods provide better visual cues for some pathologies, they generally offered limited explainability and didn't substantially improve veterinarians' diagnostic confidence.

Exploring Radiologists' Use of AI Chatbots for Assistance in Image Interpretation: Patterns of Use and Trust Evaluation.

Alarifi M

pubmed logopapersAug 13 2025
This study investigated radiologists' perceptions of AI-generated, patient-friendly radiology reports across three modalities: MRI, CT, and mammogram/ultrasound. The evaluation focused on report correctness, completeness, terminology complexity, and emotional impact. Seventy-nine radiologists from four major Saudi Arabian hospitals assessed AI-simplified versions of clinical radiology reports. Each participant reviewed one report from each modality and completed a structured questionnaire covering factual correctness, completeness, terminology complexity, and emotional impact. A structured and detailed prompt was used to guide ChatGPT-4 in generating the reports, which included clear findings, a lay summary, glossary, and clarification of ambiguous elements. Statistical analyses included descriptive summaries, Friedman tests, and Pearson correlations. Radiologists rated mammogram reports highest for correctness (M = 4.22), followed by CT (4.05) and MRI (3.95). Completeness scores followed a similar trend. Statistically significant differences were found in correctness (χ<sup>2</sup>(2) = 17.37, p < 0.001) and completeness (χ<sup>2</sup>(2) = 13.13, p = 0.001). Anxiety and complexity ratings were moderate, with MRI reports linked to slightly higher concern. A weak positive correlation emerged between radiologists' experience and mammogram correctness ratings (r = .235, p = .037). Radiologists expressed overall support for AI-generated simplified radiology reports when created using a structured prompt that includes summaries, glossaries, and clarification of ambiguous findings. While mammography and CT reports were rated favorably, MRI reports showed higher emotional impact, highlighting a need for clearer and more emotionally supportive language.

SKOOTS: Skeleton oriented object segmentation for mitochondria

Buswinka, C. J., Osgood, R. T., Nitta, H., Indzhykulian, A. A.

biorxiv logopreprintAug 13 2025
Segmenting individual instances of mitochondria from imaging datasets can provide rich quantitative information, but is prohibitively time-consuming when done manually, prompting interest in the development of automated algorithms using deep neural networks. Existing solutions for various segmentation tasks are optimized for either: high-resolution three-dimensional imaging, relying on well-defined object boundaries (e.g., whole neuron segmentation in volumetric electron microscopy datasets); or low-resolution two-dimensional imaging, boundary-invariant but poorly suited to large 3D objects (e.g., whole-cell segmentation of light microscopy images). Mitochondria in whole-cell 3D electron microscopy datasets often lie in the middle ground - large, yet with ambiguous borders, challenging current segmentation tools. To address this, we developed skeleton-oriented object segmentation (SKOOTS) - a novel approach that efficiently segments large, densely packed mitochondria. SKOOTS accurately and efficiently segments mitochondria in previously difficult contexts and can also be applied to segment other objects in 3D light microscopy datasets. This approach bridges a critical gap between existing segmentation approaches, improving the utility of automated analysis of three-dimensional biomedical imaging data. We demonstrate the utility of SKOOTS by applying it to segment over 15,000 cochlear hair cell mitochondria across experimental conditions in under 2 hours on a consumer-grade PC, enabling downstream morphological analysis that revealed subtle structural changes following aminoglycoside exposure - differences not detectable using analysis approaches currently used in the field.

A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation

Haibo Jin, Haoxuan Che, Sunan He, Hao Chen

arxiv logopreprintAug 13 2025
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.

An optimized multi-task contrastive learning framework for HIFU lesion detection and segmentation.

Zavar M, Ghaffari HR, Tabatabaee H

pubmed logopapersAug 13 2025
Accurate detection and segmentation of lesions induced by High-Intensity Focused Ultrasound (HIFU) in medical imaging remain significant challenges in automated disease diagnosis. Traditional methods heavily rely on labeled data, which is often scarce, expensive, and time-consuming to obtain. Moreover, existing approaches frequently struggle with variations in medical data and the limited availability of annotated datasets, leading to suboptimal performance. To address these challenges, this paper introduces an innovative framework called the Optimized Multi-Task Contrastive Learning Framework (OMCLF), which leverages self-supervised learning (SSL) and genetic algorithms (GA) to enhance HIFU lesion detection and segmentation. OMCLF integrates classification and segmentation into a unified model, utilizing a shared backbone to extract common features. The framework systematically optimizes feature representations, hyperparameters, and data augmentation strategies tailored for medical imaging, ensuring that critical information, such as lesion details, is preserved. By employing a genetic algorithm, OMCLF explores and optimizes augmentation techniques suitable for medical data, avoiding distortions that could compromise diagnostic accuracy. Experimental results demonstrate that OMCLF outperforms single-task methods in both classification and segmentation tasks while significantly reducing dependency on labeled data. Specifically, OMCLF achieves an accuracy of 93.3% in lesion detection and a Dice score of 92.5% in segmentation, surpassing state-of-the-art methods such as SimCLR and MoCo. The proposed approach achieves superior accuracy in identifying and delineating HIFU-induced lesions, marking a substantial advancement in medical image interpretation and automated diagnosis. OMCLF represents a significant step forward in the evolutionary optimization of self-supervised learning, with potential applications across various medical imaging domains.

ES-UNet: efficient 3D medical image segmentation with enhanced skip connections in 3D UNet.

Park M, Oh S, Park J, Jeong T, Yu S

pubmed logopapersAug 13 2025
Deep learning has significantly advanced medical image analysis, particularly in semantic segmentation, which is essential for clinical decisions. However, existing 3D segmentation models, like the traditional 3D UNet, face challenges in balancing computational efficiency and accuracy when processing volumetric medical data. This study aims to develop an improved architecture for 3D medical image segmentation with enhanced learning strategies to improve accuracy and address challenges related to limited training data. We propose ES-UNet, a 3D segmentation architecture that achieves superior segmentation performance while offering competitive efficiency across multiple computational metrics, including memory usage, inference time, and parameter count. The model builds upon the full-scale skip connection design of UNet3+ by integrating channel attention modules into each encoder-to-decoder path and incorporating full-scale deep supervision to enhance multi-resolution feature learning. We further introduce Region Specific Scaling (RSS), a data augmentation method that adaptively applies geometric transformations to annotated regions, and a Dynamically Weighted Dice (DWD) loss to improve the balance between precision and recall. The model was evaluated on the MICCAI HECKTOR dataset, and additional validation was conducted on selected tasks from the Medical Segmentation Decathlon (MSD). On the HECKTOR dataset, ES-UNet achieved a Dice Similarity Coefficient (DSC) of 76.87%, outperforming baseline models including 3D UNet, 3D UNet 3+, nnUNet, and Swin UNETR. Ablation studies showed that RSS and DWD contributed up to 1.22% and 1.06% improvement in DSC, respectively. A sensitivity analysis demonstrated that the chosen scaling range in RSS offered a favorable trade-off between deformation and anatomical plausibility. Cross-dataset evaluation on MSD Heart and Spleen tasks also indicated strong generalization. Computational analysis revealed that ES-UNet achieves superior segmentation performance with moderate computational demands. Specifically, the enhanced skip connection design with lightweight channel attention modules integrated throughout the network architecture enables this favorable balance between high segmentation accuracy and computational efficiency. ES-UNet integrates architectural and algorithmic improvements to achieve robust 3D medical image segmentation. While the framework incorporates established components, its core contributions lie in the optimized skip connection strategy and supporting techniques like RSS and DWD. Future work will explore adaptive scaling strategies and broader validation across diverse imaging modalities.

KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging

Valentin Boussot, Jean-Louis Dillenseger

arxiv logopreprintAug 13 2025
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.
Page 6 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.