Sort by:
Page 59 of 3093083 results

Synomaly noise and multi-stage diffusion: A novel approach for unsupervised anomaly detection in medical images.

Bi Y, Huang L, Clarenbach R, Ghotbi R, Karlas A, Navab N, Jiang Z

pubmed logopapersJul 26 2025
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection. Code:https://github.com/yuan-12138/Synomaly.

Accelerating cardiac radial-MRI: Fully polar based technique using compressed sensing and deep learning.

Ghodrati V, Duan J, Ali F, Bedayat A, Prosper A, Bydder M

pubmed logopapersJul 26 2025
Fast radial-MRI approaches based on compressed sensing (CS) and deep learning (DL) often use non-uniform fast Fourier transform (NUFFT) as the forward imaging operator, which might introduce interpolation errors and reduce image quality. Using the polar Fourier transform (PFT), we developed fully polar CS and DL algorithms for fast 2D cardiac radial-MRI. Our methods directly reconstruct images in polar spatial space from polar k-space data, eliminating frequency interpolation and ensuring an easy-to-compute data consistency term for the DL framework via the variable splitting (VS) scheme. Furthermore, PFT reconstruction produces initial images with fewer artifacts in a reduced field of view, making it a better starting point for CS and DL algorithms, especially for dynamic imaging, where information from a small region of interest is critical, as opposed to NUFFT, which often results in global streaking artifacts. In the cardiac region, PFT-based CS technique outperformed NUFFT-based CS at acceleration rates of 5x (mean SSIM: 0.8831 vs. 0.8526), 10x (0.8195 vs. 0.7981), and 15x (0.7720 vs. 0.7503). Our PFT(VS)-DL technique outperformed the NUFFT(GD)-based DL method, which used unrolled gradient descent with the NUFFT as the forward imaging operator, with mean SSIM scores of 0.8914 versus 0.8617 at 10x and 0.8470 versus 0.8301 at 15x. Radiological assessments revealed that PFT(VS)-based DL scored 2.9±0.30 and 2.73±0.45 at 5x and 10x, whereas NUFFT(GD)-based DL scored 2.7±0.47 and 2.40±0.50, respectively. Our methods suggest a promising alternative to NUFFT-based fast radial-MRI for dynamic imaging, prioritizing reconstruction quality in a small region of interest over whole image quality.

Artificial intelligence-powered software outperforms interventional cardiologists in assessment of IVUS-based stent optimization.

Rubio PM, Garcia-Garcia HM, Galo J, Chaturvedi A, Case BC, Mintz GS, Ben-Dor I, Hashim H, Waksman R

pubmed logopapersJul 26 2025
Optimal stent deployment assessed by intravascular ultrasound (IVUS) is associated with improved outcomes after percutaneous coronary intervention (PCI). However, IVUS remains underutilized due to its time-consuming analysis and reliance on operator expertise. AVVIGO™+, an FDA-approved artificial intelligence (AI) software, offers automated lesion assessment, but its performance for stent evaluation has not been thoroughly investigated. To assess whether an artificial intelligence-powered software (AVVIGO™+) provides a superior evaluation of IVUS-based stent expansion index (%Stent expansion = Minimum Stent Area (MSA) / Distal reference lumen area) and geographic miss (i.e. >50 % plaque burden - PB - at stent edges) compared to the current gold standard method performed by interventional cardiologists (IC), defined as frame-by-frame visual assessment by interventional cardiologists, selecting the MSA and the reference frame with the largest lumen area within 5 mm of the stent edge, following expert consensus. This retrospective study included 60 patients (47,997 IVUS frames) who underwent IVUS guided PCI, independently analyzed by IC and AVVIGO™+. Assessments included minimum stent area (MSA), stent expansion index, and PB at proximal and distal reference segments. For expansion, a threshold of 80 % was used to define suboptimal results. The time required for expansion analysis was recorded for both methods. Concordance, absolute and relative differences were evaluated. AVVIGO™ + consistently identified lower mean expansion (70.3 %) vs. IC (91.2 %), (p < 0.0001), primarily due to detecting frames with smaller MSA values (5.94 vs. 7.19 mm<sup>2</sup>, p = 0.0053). This led to 25 discordant cases in which AVVIGO™ + reported suboptimal expansion while IC classified the result as adequate. The analysis time was significantly shorter with AVVIGO™ + (0.76 ± 0.39 min) vs IC (1.89 ± 0.62 min) (p < 0.0001), representing a 59.7 % reduction. For geographic miss, AVVIGO™ + reported higher PB than IC at both distal (51.8 % vs. 43.0 %, p < 0.0001) and proximal (50.0 % vs. 43.0 %, p = 0.0083) segments. When applying the 50 % PB threshold, AVVIGO™ + identified PB ≥50 % not seen by IC in 12 cases (6 distal, 6 proximal). AVVIGO™ + demonstrated improved detection of suboptimal stent expansion and geographic miss compared to interventional cardiologists, while also significantly reducing analysis time. These findings suggest that AI-based platforms may offer a more reliable and efficient approach to IVUS-guided stent optimization, with potential to enhance consistency in clinical practice.

Current evidence of low-dose CT screening benefit.

Yip R, Mulshine JL, Oudkerk M, Field J, Silva M, Yankelevitz DF, Henschke CI

pubmed logopapersJul 25 2025
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to late-stage diagnosis. Low-dose computed tomography (LDCT) screening has emerged as a powerful tool for early detection, enabling diagnosis at curable stages and reducing lung cancer mortality. Despite strong evidence, LDCT screening uptake remains suboptimal globally. This review synthesizes current evidence supporting LDCT screening, highlights ongoing global implementation efforts, and discusses key insights from the 1st AGILE conference. Lung cancer screening is gaining global momentum, with many countries advancing plans for national LDCT programs. Expanding eligibility through risk-based models and targeting high-risk never- and light-smokers are emerging strategies to improve efficiency and equity. Technological advancements, including AI-assisted interpretation and image-based biomarkers, are addressing concerns around false positives, overdiagnosis, and workforce burden. Integrating cardiac and smoking-related disease assessment within LDCT screening offers added preventive health benefits. To maximize global impact, screening strategies must be tailored to local health systems and populations. Efforts should focus on increasing awareness, standardizing protocols, optimizing screening intervals, and strengthening multidisciplinary care pathways. International collaboration and shared infrastructure can accelerate progress and ensure sustainability. LDCT screening represents a cost-effective opportunity to reduce lung cancer mortality and premature deaths.

Quantifying physiological variability and improving reproducibility in 4D-flow MRI cerebrovascular measurements with self-supervised deep learning.

Jolicoeur BW, Yardim ZS, Roberts GS, Rivera-Rivera LA, Eisenmenger LB, Johnson KM

pubmed logopapersJul 25 2025
To assess the efficacy of self-supervised deep learning (DL) denoising in reducing measurement variability in 4D-Flow MRI, and to clarify the contributions of physiological variation to cerebrovascular hemodynamics. A self-supervised DL denoising framework was trained on 3D radially sampled 4D-Flow MRI data. The model was evaluated in a prospective test-retest imaging study in which 10 participants underwent multiple 4D-Flow MRI scans. This included back-to-back scans and a single scan interleaved acquisition designed to isolate noise from physiological variations. The effectiveness of DL denoising was assessed by comparing pixelwise velocity and hemodynamic metrics before and after denoising. DL denoising significantly enhanced the reproducibility of 4D-Flow MRI measurements, reducing the 95% confidence interval of cardiac-resolved velocity from 215 to 142 mm/s in back-to-back scans and from 158 to 96 mm/s in interleaved scans, after adjusting for physiological variation. In derived parameters, DL denoising did not significantly improve integrated measures, such as flow rates, but did significantly improve noise sensitive measures, such as pulsatility index. Physiologic variation in back-to-back time-resolved scans contributed 26.37% ± 0.08% and 32.42% ± 0.05% of standard error before and after DL. Self-supervised DL denoising enhances the quantitative repeatability of 4D-Flow MRI by reducing technical noise; however, variations from physiology and post-processing are not removed. These findings underscore the importance of accounting for both technical and physiological variability in neurovascular flow imaging, particularly for studies aiming to establish biomarkers for neurodegenerative diseases with vascular contributions.

Artificial intelligence based fully automatic 3D paranasal sinus segmentation.

Kaygısız Yiğit M, Pınarbaşı A, Etöz M, Duman ŞB, Bayrakdar İŞ

pubmed logopapersJul 25 2025
Precise 3D segmentation of paranasal sinuses is essential for accurate diagnosis and treatment. This study aimed to develop a fully automated segmentation algorithm for the paranasal sinuses using the nnU-Net v2 architecture. The nnU-Net v2-based segmentation algorithm was developed using Python 3.6.1 and the PyTorch library, and its performance was evaluated on a dataset of 97 cone-beam computed tomography (CBCT) scans. Ground truth annotations were manually generated by expert radiologists using the 3D Slicer software, employing a polygonal labeling technique across sagittal, coronal, and axial planes. Model performance was assessed using several quantitative metrics, including accuracy, Dice Coefficient (DC), sensitivity, precision, Jaccard Index, Area Under the Curve (AUC), and 95% Hausdorff Distance (95% HD). The nnU-Net v2-based algorithm demonstrated high segmentation performance across all paranasal sinuses. Dice Coefficient (DC) values were 0.94 for the frontal, 0.95 for the sphenoid, 0.97 for the maxillary, and 0.88 for the ethmoid sinuses. Accuracy scores exceeded 99% for all sinuses. The 95% Hausdorff Distance (95% HD) values were 0.51 mm for both the frontal and maxillary sinuses, 0.85 mm for the sphenoid sinus, and 1.17 mm for the ethmoid sinus. Jaccard indices were 0.90, 0.91, 0.94, and 0.80, respectively. This study highlights the high accuracy and precision of the nnU-Net v2-based CNN model in the fully automated segmentation of paranasal sinuses from CBCT images. The results suggest that the proposed model can significantly contribute to clinical decision-making processes, facilitating diagnostic and therapeutic procedures.

Image quality in ultra-low-dose chest CT versus chest x-rays guiding paediatric cystic fibrosis care.

Moore N, O'Regan P, Young R, Curran G, Waldron M, O'Mahony A, Suleiman ME, Murphy MJ, Maher M, England A, McEntee MF

pubmed logopapersJul 25 2025
Cystic fibrosis (CF) is a prevalent autosomal recessive disorder, with lung complications being the primary cause of morbidity and mortality. In paediatric patients, structural lung changes begin early, necessitating prompt detection to guide treatment and delay disease progression. This study evaluates ultra-low-dose CT (ULDCT) versus chest x-rays  (CXR) for children with CF (CwCF) lung disease assessment. ULDCT uses AI-enhanced deep-learning iterative reconstruction to achieve radiation doses comparable to a CXR. This prospective study recruited radiographers and radiologists to assess the image quality (IQ) of ten paired ULDCT and CXR images of CwCF from a single centre. Statistical analyses, including the Wilcoxon Signed Rank test and visual grading characteristic (VGC) analysis, compared diagnostic confidence and anatomical detail. Seventy-five participants were enrolled, 25 radiologists and 50 radiographers. The majority (88%) preferred ULDCT over CXR for monitoring CF lung disease due to higher perceived confidence (p ≤ 0.001) and better IQ ratings (p ≤ 0.05), especially among radiologists (area under the VGC curve and its 95% CI was 0.63 (asymmetric 95% CI: 0.51-0.73; p ≤ 0.05). While ULDCT showed no significant differences in anatomical visualisation compared to CXR, the overall IQ for lung pathology assessment was rated superior. ULDCT offers superior IQ over CXR in CwCF, with similar radiation doses. It also enhances diagnostic confidence, supporting its use as a viable CXR alternative. Standardising CT protocols to optimise IQ and minimise radiation is essential to improve disease monitoring in this vulnerable group. Question How does chest X-ray (CXR) IQ in children compare to ULDCT at similar radiation doses for assessing CF-related lung disease? Findings ULDCT offers superior IQ over CXR in CwCF. Participants preferred ULDCT due to higher perceived confidence levels and superior IQ. Clinical relevance ULDCT can enhance diagnosis in CwCF while maintaining comparable radiation doses. ULDCT also enhances diagnostic confidence, supporting its use as a viable CXR alternative.

Innovations in gender affirmation: AI-enhanced surgical guides for mandibular facial feminization surgery.

Beyer M, Abazi S, Tourbier C, Burde A, Vinayahalingam S, Ileșan RR, Thieringer FM

pubmed logopapersJul 25 2025
This study presents a fully automated digital workflow using artificial intelligence (AI) to create patient-specific cutting guides for mandible-angle osteotomies in facial feminization surgery (FFS). The goal is to achieve predictable, accurate, and safe results with minimal user input, addressing the time and effort required for conventional guide creation. Three-dimensional CT images of 30 male patients were used to develop and validate a workflow that automates two key processes: (1) segmentation of the mandible using a convolutional neural network (3D U-Net architecture) and (2) virtual design of osteotomy-specific cutting guides. Segmentation accuracy was assessed through comparison with expert manual segmentations using the dice similarity coefficient (DSC) and mean surface distance (MSD). The precision of the cutting guides was evaluated based on osteotomy line accuracy and fit. Workflow efficiency was measured by comparing the time required for automated versus manual planning by expert and novice users. The AI-based workflow achieved a median DSC of 0.966 and a median MSD of 0.212 mm, demonstrating high accuracy. The median planning time was reduced to 1 min and 38 s with the automated system, compared to 19 min and 37 s for an expert and 26 min and 39 s for a novice, representing 10- and 16-fold time reductions, respectively. The AI-based workflow is accurate, efficient, and cost-effective, significantly reducing planning time while maintaining clinical precision. This workflow improves surgical outcomes with precise and reliable cutting guides, enhancing efficiency and accessibility for clinicians, including those with limited experience in designing cutting guides.

Methinks AI software for identifying large vessel occlusion in non-contrast head CT: A pilot retrospective study in American population.

Sanders JV, Keigher K, Oliver M, Joshi K, Lopes D

pubmed logopapersJul 25 2025
BackgroundNon-contrast computed tomography (NCCT) is the first image for stroke assessment, but its sensitivity for detecting large vessel occlusion (LVO) is limited. Artificial intelligence (AI) algorithms may contribute to a faster LVO diagnosis using only NCCT. This study evaluates the performance and the potential diagnostic time saving of Methinks LVO AI algorithm in a U.S. multi-facility stroke network.MethodsThis retrospective pilot study reviewed NCCT and computed tomography angiography (CTA) images between 2015 and 2023. The Methinks AI algorithm, designed to detect LVOs in the internal carotid artery and middle cerebral artery, was tested for sensitivity, specificity, and predictive values. A neuroradiologist reviewed cases to establish a gold standard. To evaluate potential time saving in workflow, time gaps between NCCT and CTA were analyzed and stratified into four groups in true positive cases: Group 1 (<10 min), Group 2 (10-30 min), Group 3 (30-60 min), and Group 4 (>60 min).ResultsFrom a total of 1155 stroke codes, 608 NCCT exams were analyzed. Methinks LVO demonstrated 75% sensitivity and 83% specificity, identifying 146 out of 194 confirmed LVO cases correctly. The PPV of the algorithm was 72%. The NPV was 83% (considering 'other occlusion', 'stenosis' and 'posteriors' as negatives), and 73% considered the same conditions as positives. Among the true positive cases, we found 112 patients Group 1, 32 patients in Group 2, 15 patients in Group 3, 3 patients in Group 4.ConclusionThe Methinks AI algorithm shows promise for improving LVO detection from NCCT, especially in resource limited settings. However, its sensitivity remains lower than CTA-based systems, suggesting the need for further refinement.

Carotid and femoral bifurcation plaques detected by ultrasound as predictors of cardiovascular events.

Blinc A, Nicolaides AN, Poredoš P, Paraskevas KI, Heiss C, Müller O, Rammos C, Stanek A, Jug B

pubmed logopapersJul 25 2025
<b></b>Risk factor-based algorithms give a good estimate of cardiovascular (CV) risk at the population level but are often inaccurate at the individual level. Detecting preclinical atherosclerotic plaques in the carotid and common femoral arterial bifurcations by ultrasound is a simple, non-invasive way of detecting atherosclerosis in the individual and thus more accurately estimating his/her risk of future CV events. The presence of plaques in these bifurcations is independently associated with increased risk of CV death and myocardial infarction, even after adjusting for traditional risk factors, while ultrasonographic characteristics of vulnerable plaque are mostly associated with increased risk for ipsilateral ischaemic stroke. The predictive value of carotid and femoral plaques for CV events increases in proportion to plaque burden and especially by plaque progression over time. Assessing the burden of carotid and/or common femoral bifurcation plaques enables reclassification of a significant number of individuals with low risk according risk factor-based algorithms into intermediate or high CV risk and intermediate risk individuals into the low- or high CV risk. Ongoing multimodality imaging studies, supplemented by clinical and genetic data, aided by machine learning/ artificial intelligence analysis are expected to advance our understanding of atherosclerosis progression from the asymptomatic into the symptomatic phase and personalize prevention.
Page 59 of 3093083 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.