Sort by:
Page 58 of 1241236 results

Radiomics analysis based on dynamic contrast-enhanced MRI for predicting early recurrence after hepatectomy in hepatocellular carcinoma patients.

Wang KD, Guan MJ, Bao ZY, Shi ZJ, Tong HH, Xiao ZQ, Liang L, Liu JW, Shen GL

pubmed logopapersJul 1 2025
This study aimed to develop a machine learning model based on Magnetic Resonance Imaging (MRI) radiomics for predicting early recurrence after curative surgery in patients with hepatocellular carcinoma (HCC).A retrospective analysis was conducted on 200 patients with HCC who underwent curative hepatectomy. Patients were randomly allocated to training (n = 140) and validation (n = 60) cohorts. Preoperative arterial, portal venous, and delayed phase images were acquired. Tumor regions of interest (ROIs) were manually delineated, with an additional ROI obtained by expanding the tumor boundary by 5 mm. Radiomic features were extracted and selected using the Least Absolute Shrinkage and Selection Operator (LASSO). Multiple machine learning algorithms were employed to develop predictive models. Model performance was evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, and calibration curves. The 20 most discriminative radiomic features were integrated with tumor size and satellite nodules for model development. In the validation cohort, the clinical-peritumoral radiomics model demonstrated superior predictive accuracy (AUC = 0.85, 95% CI: 0.74-0.95) compared to the clinical-intratumoral radiomics model (AUC = 0.82, 95% CI: 0.68-0.93) and the radiomics-only model (AUC = 0.82, 95% CI: 0.69-0.93). Furthermore, calibration curves and decision curve analyses indicated superior calibration ability and clinical benefit. The MRI-based peritumoral radiomics model demonstrates significant potential for predicting early recurrence of HCC.

Radiomics Analysis of Different Machine Learning Models based on Multiparametric MRI to Identify Benign and Malignant Testicular Lesions.

Jian Y, Yang S, Liu R, Tan X, Zhao Q, Wu J, Chen Y

pubmed logopapersJul 1 2025
To develop and validate a machine learning-based prediction model for the use of multiparametric magnetic resonance imaging(MRI) to predict benign and malignant lesions in the testis. The study retrospectively enrolled 148 patients with pathologically confirmed benign and malignant testicular lesions, dividing them into: training set (n=103) and validation set (n=45). Radiomics characteristics were derived from T2-weighted(T2WI)、contrast-enhanced T1-weighted(CE-T1WI)、diffusion-weighted imaging(DWI) and Apparent diffusion coefficient(ADC) MRI images, followed by feature selection. A machine learning-based combined model was developed by incorporating radiomics scores (rad scores) from the optimal radiomics model along with clinical predictors. Draw the receiver operating characteristic (ROC) curve and use the area under the curve (AUC) to evaluate and compare the predictive performance of each model. The diagnostic efficacy of the various machine learning models was evaluated using the Delong test. Radiomics features were extracted from four sequence-based groups(CE-T1WI+DWI+ADC+T2WI), and the model that combined Logistic Regression(LR) machine learning showed the best performance in the radiomics model. The clinical model identified one independent predictors. The combined clinical-radiomics model showed the best performance, whose AUC value was 0.932(95% confidence intervals(CI)0.868-0.978), sensitivity was 0.875, specificity was 0.871 and accuracy was 0.884 in validation set. The combined clinical-radiomics model can be used as a reliable tool to predict benign and malignant testicular lesions and provide a reference for clinical treatment method decisions.

Deformable image registration with strategic integration pyramid framework for brain MRI.

Zhang Y, Zhu Q, Xie B, Li T

pubmed logopapersJul 1 2025
Medical image registration plays a crucial role in medical imaging, with a wide range of clinical applications. In this context, brain MRI registration is commonly used in clinical practice for accurate diagnosis and treatment planning. In recent years, deep learning-based deformable registration methods have achieved remarkable results. However, existing methods have not been flexible and efficient in handling the feature relationships of anatomical structures at different levels when dealing with large deformations. To address this limitation, we propose a novel strategic integration registration network based on the pyramid structure. Our strategy mainly includes two aspects of integration: fusion of features at different scales, and integration of different neural network structures. Specifically, we design a CNN encoder and a Transformer decoder to efficiently extract and enhance both global and local features. Moreover, to overcome the error accumulation issue inherent in pyramid structures, we introduce progressive optimization iterations at the lowest scale for deformation field generation. This approach more efficiently handles the spatial relationships of images while improving accuracy. We conduct extensive evaluations across multiple brain MRI datasets, and experimental results show that our method outperforms other deep learning-based methods in terms of registration accuracy and robustness.

Automated vs manual cardiac MRI planning: a single-center prospective evaluation of reliability and scan times.

Glessgen C, Crowe LA, Wetzl J, Schmidt M, Yoon SS, Vallée JP, Deux JF

pubmed logopapersJul 1 2025
Evaluating the impact of an AI-based automated cardiac MRI (CMR) planning software on procedure errors and scan times compared to manual planning alone. Consecutive patients undergoing non-stress CMR were prospectively enrolled at a single center (August 2023-February 2024) and randomized into manual, or automated scan execution using prototype software. Patients with pacemakers, targeted indications, or inability to consent were excluded. All patients underwent the same CMR protocol with contrast, in breath-hold (BH) or free breathing (FB). Supervising radiologists recorded procedure errors (plane prescription, forgotten views, incorrect propagation of cardiac planes, and field-of-view mismanagement). Scan times and idle phase (non-acquisition portion) were computed from scanner logs. Most data were non-normally distributed and compared using non-parametric tests. Eighty-two patients (mean age, 51.6 years ± 17.5; 56 men) were included. Forty-four patients underwent automated and 38 manual CMRs. The mean rate of procedure errors was significantly (p = 0.01) lower in the automated (0.45) than in the manual group (1.13). The rate of error-free examinations was higher (p = 0.03) in the automated (31/44; 70.5%) than in the manual group (17/38; 44.7%). Automated studies were shorter than manual studies in FB (30.3 vs 36.5 min, p < 0.001) but had similar durations in BH (42.0 vs 43.5 min, p = 0.42). The idle phase was lower in automated studies for FB and BH strategies (both p < 0.001). An AI-based automated software performed CMR at a clinical level with fewer planning errors and improved efficiency compared to manual planning. Question What is the impact of an AI-based automated CMR planning software on procedure errors and scan times compared to manual planning alone? Findings Software-driven examinations were more reliable (71% error-free) than human-planned ones (45% error-free) and showed improved efficiency with reduced idle time. Clinical relevance CMR examinations require extensive technologist training, and continuous attention, and involve many planning steps. A fully automated software reliably acquired non-stress CMR potentially reducing mistake risk and increasing data homogeneity.

Accelerated Multi-b-Value DWI Using Deep Learning Reconstruction: Image Quality Improvement and Microvascular Invasion Prediction in BCLC Stage A Hepatocellular Carcinoma.

Zhu Y, Wang P, Wang B, Feng B, Cai W, Wang S, Meng X, Wang S, Zhao X, Ma X

pubmed logopapersJul 1 2025
To investigate the effect of accelerated deep-learning (DL) multi-b-value DWI (Mb-DWI) on acquisition time, image quality, and predictive ability of microvascular invasion (MVI) in BCLC stage A hepatocellular carcinoma (HCC), compared to standard Mb-DWI. Patients who underwent liver MRI were prospectively collected. Subjective image quality, signal-to-noise ratio (SNR), lesion contrast-to-noise ratio (CNR), and Mb-DWI-derived parameters from various models (mono-exponential model, intravoxel incoherent motion, diffusion kurtosis imaging, and stretched exponential model) were calculated and compared between the two sequences. The Mb-DWI parameters of two sequences were compared between MVI-positive and MVI-negative groups, respectively. ROC and logistic regression analysis were performed to evaluate and identify the predictive performance. The study included 118 patients. 48/118 (40.67%) lesions were identified as MVI positive. DL Mb-DWI significantly reduced acquisition time by 52.86%. DL Mb-DWI produced significantly higher overall image quality, SNR, and CNR than standard Mb-DWI. All diffusion-related parameters except pseudo-diffusion coefficient showed significant differences between the two sequences. Both in DL and standard Mb-DWI, the apparent diffusion coefficient, true diffusion coefficient (D), perfusion fraction (f), mean diffusivity (MD), mean kurtosis (MK), and distributed diffusion coefficient (DDC) values were significantly different between MVI-positive and MVI-negative groups. The combination of D, f, and MK yield the highest AUC of 0.912 and 0.928 in standard and DL sequences, with no significant difference regarding the predictive efficiency. The DL Mb-DWI significantly reduces acquisition time and improves image quality, with comparable predictive performance to standard Mb-DWI in discriminating MVI status in BCLC stage A HCC.

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

Wang Y, Xie B, Wang K, Zou W, Liu A, Xue Z, Liu M, Ma Y

pubmed logopapersJul 1 2025
This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI) status of rectal cancer (RC) patients. This retrospective study recruited 291 rectal cancer patients with pathologically confirmed MSI status and randomly divided them into a training cohort and a testing cohort at a ratio of 8:2. First, the K-means method was used for cluster analysis of tumor voxels, and sub-region radiomics features and classical radiomics features were respectively extracted from multi-parameter MRI sequences. Then, the synthetic minority over-sampling technique method was used to balance the sample size, and finally, the features were screened. Prediction models were established using logistic regression based on clinicopathological variables, classical radiomics features, and MSI-related sub-region radiomics features, and the contribution of each feature to the model decision was quantified by the Shapley-Additive-Explanations (SHAP) algorithm. The area under the curve (AUC) of the sub-region radiomics model in the training and testing groups was 0.848 and 0.8, respectively, both better than that of the classical radiomics and clinical models. The combined model performed the best, with AUCs of 0.908 and 0.863 in the training and testing groups, respectively. We developed and validated a robust combined model that integrates clinical variables, classical radiomics features, and sub-region radiomics features to accurately determine the MSI status of RC patients. We visualized the prediction process using SHAP, enabling more effective personalized treatment plans and ultimately improving RC patient survival rates.

Denoising Diffusion Probabilistic Model to Simulate Contrast-enhanced spinal MRI of Spinal Tumors: A Multi-Center Study.

Wang C, Zhang S, Xu J, Wang H, Wang Q, Zhu Y, Xing X, Hao D, Lang N

pubmed logopapersJul 1 2025
To generate virtual T1 contrast-enhanced (T1CE) sequences from plain spinal MRI sequences using the denoising diffusion probabilistic model (DDPM) and to compare its performance against one baseline model pix2pix and three advanced models. A total of 1195 consecutive spinal tumor patients who underwent contrast-enhanced MRI at two hospitals were divided into a training set (n = 809, 49 ± 17 years, 437 men), an internal test set (n = 203, 50 ± 16 years, 105 men), and an external test set (n = 183, 52 ± 16 years, 94 men). Input sequences were T1- and T2-weighted images, and T2 fat-saturation images. The output was T1CE images. In the test set, one radiologist read the virtual images and marked all visible enhancing lesions. Results were evaluated using sensitivity (SE) and false discovery rate (FDR). We compared differences in lesion size and enhancement degree between reference and virtual images, and calculated signal-to-noise (SNR) and contrast-to-noise ratios (CNR) for image quality assessment. In the external test set, the mean squared error was 0.0038±0.0065, and structural similarity index 0.78±0.10. Upon evaluation by the reader, the overall SE of the generated T1CE images was 94% with FDR 2%. There was no difference in lesion size or signal intensity ratio between the reference and generated images. The CNR was higher in the generated images than the reference images (9.241 vs. 4.021; P<0.001). The proposed DDPM demonstrates potential as an alternative to gadolinium contrast in spinal MRI examinations of oncologic patients.

HALSR-Net: Improving CNN Segmentation of Cardiac Left Ventricle MRI with Hybrid Attention and Latent Space Reconstruction.

Fakhfakh M, Sarry L, Clarysse P

pubmed logopapersJul 1 2025
Accurate cardiac MRI segmentation is vital for detailed cardiac analysis, yet the manual process is labor-intensive and prone to variability. Despite advancements in MRI technology, there remains a significant need for automated methods that can reliably and efficiently segment cardiac structures. This paper introduces HALSR-Net, a novel multi-level segmentation architecture designed to improve the accuracy and reproducibility of cardiac segmentation from Cine-MRI acquisitions, focusing on the left ventricle (LV). The methodology consists of two main phases: first, the extraction of the region of interest (ROI) using a regression model that accurately predicts the location of a bounding box around the LV; second, the semantic segmentation step based on HALSR-Net architecture. This architecture incorporates a Hybrid Attention Pooling Module (HAPM) that merges attention and pooling mechanisms to enhance feature extraction and capture contextual information. Additionally, a reconstruction module leverages latent space features to further improve segmentation accuracy. Experiments conducted on an in-house clinical dataset and two public datasets (ACDC and LVQuan19) demonstrate that HALSR-Net outperforms state-of-the-art architectures, achieving up to 98% accuracy and F1-score for the segmentation of the LV cavity and myocardium. The proposed approach effectively addresses the limitations of existing methods, offering a more accurate and robust solution for cardiac MRI segmentation, thereby likely to improve cardiac function analysis and patient care.

External Validation of an Artificial Intelligence Algorithm Using Biparametric MRI and Its Simulated Integration with Conventional PI-RADS for Prostate Cancer Detection.

Belue MJ, Mukhtar V, Ram R, Gokden N, Jose J, Massey JL, Biben E, Buddha S, Langford T, Shah S, Harmon SA, Turkbey B, Aydin AM

pubmed logopapersJul 1 2025
Prostate imaging reporting and data systems (PI-RADS) experiences considerable variability in inter-reader performance. Artificial Intelligence (AI) algorithms were suggested to provide comparable performance to PI-RADS for assessing prostate cancer (PCa) risk, albeit tested in highly selected cohorts. This study aimed to assess an AI algorithm for PCa detection in a clinical practice setting and simulate integration of the AI model with PI-RADS for assessment of indeterminate PI-RADS 3 lesions. This retrospective cohort study externally validated a biparametric MRI-based AI model for PCa detection in a consecutive cohort of patients who underwent prostate MRI and subsequently targeted and systematic prostate biopsy at a urology clinic between January 2022 and March 2024. Radiologist interpretations followed PI-RADS v2.1, and biopsies were conducted per PI-RADS scores. The previously developed AI model provided lesion segmentations and cancer probability maps which were compared to biopsy results. Additionally, we conducted a simulation to adjust biopsy thresholds for index PI-RADS category 3 studies, where AI predictions within these studies upgraded them to PI-RADS category 4. Among 144 patients with a median age of 70 years and PSA density of 0.17ng/mL/cc, AI's sensitivity for detection of PCa (86.6%) and clinically significant PCa (csPCa, 88.4%) was comparable to radiologists (85.7%, p=0.84, and 89.5%, p=0.80, respectively). The simulation combining radiologist and AI evaluations improved clinically significant PCa sensitivity by 5.8% (p=0.025). The combination of AI, PI-RADS and PSA density provided the best diagnostic performance for csPCa (area under the curve [AUC]=0.76). The AI algorithm demonstrated comparable PCa detection rates to PI-RADS. The combination of AI with radiologist interpretation improved sensitivity and could be instrumental in assessment of low-risk and indeterminate PI-RADS lesions. The role of AI in PCa screening remains to be further elucidated.

Multiparametric MRI-based Interpretable Machine Learning Radiomics Model for Distinguishing Between Luminal and Non-luminal Tumors in Breast Cancer: A Multicenter Study.

Zhou Y, Lin G, Chen W, Chen Y, Shi C, Peng Z, Chen L, Cai S, Pan Y, Chen M, Lu C, Ji J, Chen S

pubmed logopapersJul 1 2025
To construct and validate an interpretable machine learning (ML) radiomics model derived from multiparametric magnetic resonance imaging (MRI) images to differentiate between luminal and non-luminal breast cancer (BC) subtypes. This study enrolled 1098 BC participants from four medical centers, categorized into a training cohort (n = 580) and validation cohorts 1-3 (n = 252, 89, and 177, respectively). Multiparametric MRI-based radiomics features, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), and dynamic contrast-enhanced (DCE) imaging, were extracted. Five ML algorithms were applied to develop various radiomics models, from which the best performing model was identified. A ML-based combined model including optimal radiomics features and clinical predictors was constructed, with performance assessed through receiver operating characteristic (ROC) analysis. The Shapley additive explanation (SHAP) method was utilized to assess model interpretability. Tumor size and MR-reported lymph node status were chosen as significant clinical variables. Thirteen radiomics features were identified from multiparametric MRI images. The extreme gradient boosting (XGBoost) radiomics model performed the best, achieving area under the curves (AUCs) of 0.941, 0.903, 0.862, and 0.894 across training and validation cohorts 1-3, respectively. The XGBoost combined model showed favorable discriminative power, with AUCs of 0.956, 0.912, 0.894, and 0.906 in training and validation cohorts 1-3, respectively. The SHAP visualization facilitated global interpretation, identifying "ADC_wavelet-HLH_glszm_ZoneEntropy" and "DCE_wavelet-HLL_gldm_DependenceVariance" as the most significant features for the model's predictions. The XGBoost combined model derived from multiparametric MRI may proficiently differentiate between luminal and non-luminal BC and aid in treatment decision-making. An interpretable machine learning radiomics model can preoperatively predict luminal and non-luminal subtypes in breast cancer, thereby aiding therapeutic decision-making.
Page 58 of 1241236 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.