GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models.
Zotova D, Pinon N, Trombetta R, Bouet R, Jung J, Lartizien C
Zotova D, Pinon N, Trombetta R, Bouet R, Jung J, Lartizien C
Zsarnoczay E, Rapaka S, Schoepf UJ, Gnasso C, Vecsey-Nagy M, Todoran TM, Hagar MT, Kravchenko D, Tremamunno G, Griffith JP, Fink N, Derrick S, Bowman M, Sam H, Tiller M, Godoy K, Condrea F, Sharma P, O'Doherty J, Maurovich-Horvat P, Emrich T, Varga-Szemes A
Schwarzhans F, George G, Escudero Sanchez L, Zaric O, Abraham JE, Woitek R, Hatamikia S
Yagi S, Usui K, Ogawa K
Lv J, Wu L, Hong C, Wang H, Wu Z, Chen H, Liu Z
Zhang S, Chu S, Qiang Y, Zhao J, Wang Y, Wei X
Synek A, Benca E, Licandro R, Hirtler L, Pahr DH
Lin C, Cao T, Tang M, Pu W, Lei P
Kalpana G, Deepa N, Dhinakaran D
Shetty S, Yuvali M, Ozsahin I, Al-Bayatti S, Narasimhan S, Alsaegh M, Al-Daghestani H, Shetty R, Castelino R, David LR, Ozsahin DU
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.