Sort by:
Page 47 of 56560 results

Customized GPT-4V(ision) for radiographic diagnosis: can large language model detect supernumerary teeth?

Aşar EM, İpek İ, Bi Lge K

pubmed logopapersMay 21 2025
With the growing capabilities of language models like ChatGPT to process text and images, this study evaluated their accuracy in detecting supernumerary teeth on periapical radiographs. A customized GPT-4V model (CGPT-4V) was also developed to assess whether domain-specific training could improve diagnostic performance compared to standard GPT-4V and GPT-4o models. One hundred eighty periapical radiographs (90 with and 90 without supernumerary teeth) were evaluated using GPT-4 V, GPT-4o, and a fine-tuned CGPT-4V model. Each image was assessed separately with the standardized prompt "Are there any supernumerary teeth in the radiograph above?" to avoid contextual bias. Three dental experts scored the responses using a three-point Likert scale for positive cases and a binary scale for negatives. Chi-square tests and ROC analysis were used to compare model performances (p < 0.05). Among the three models, CGPT-4 V exhibited the highest accuracy, detecting supernumerary teeth correctly in 91% of cases, compared to 77% for GPT-4o and 63% for GPT-4V. The CGPT-4V model also demonstrated a significantly lower false positive rate (16%) than GPT-4V (42%). A statistically significant difference was found between CGPT-4V and GPT-4o (p < 0.001), while no significant difference was observed between GPT-4V and CGPT-4V or between GPT-4V and GPT-4o. Additionally, CGPT-4V successfully identified multiple supernumerary teeth in radiographs where present. These findings highlight the diagnostic potential of customized GPT models in dental radiology. Future research should focus on multicenter validation, seamless clinical integration, and cost-effectiveness to support real-world implementation.

TAGS: 3D Tumor-Adaptive Guidance for SAM

Sirui Li, Linkai Peng, Zheyuan Zhang, Gorkem Durak, Ulas Bagci

arxiv logopreprintMay 21 2025
Foundation models (FMs) such as CLIP and SAM have recently shown great promise in image segmentation tasks, yet their adaptation to 3D medical imaging-particularly for pathology detection and segmentation-remains underexplored. A critical challenge arises from the domain gap between natural images and medical volumes: existing FMs, pre-trained on 2D data, struggle to capture 3D anatomical context, limiting their utility in clinical applications like tumor segmentation. To address this, we propose an adaptation framework called TAGS: Tumor Adaptive Guidance for SAM, which unlocks 2D FMs for 3D medical tasks through multi-prompt fusion. By preserving most of the pre-trained weights, our approach enhances SAM's spatial feature extraction using CLIP's semantic insights and anatomy-specific prompts. Extensive experiments on three open-source tumor segmentation datasets prove that our model surpasses the state-of-the-art medical image segmentation models (+46.88% over nnUNet), interactive segmentation frameworks, and other established medical FMs, including SAM-Med2D, SAM-Med3D, SegVol, Universal, 3D-Adapter, and SAM-B (at least +13% over them). This highlights the robustness and adaptability of our proposed framework across diverse medical segmentation tasks.

Deep learning radiopathomics based on pretreatment MRI and whole slide images for predicting over survival in locally advanced nasopharyngeal carcinoma.

Yi X, Yu X, Li C, Li J, Cao H, Lu Q, Li J, Hou J

pubmed logopapersMay 21 2025
To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients. A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions. The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups. n: The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

CONSIGN: Conformal Segmentation Informed by Spatial Groupings via Decomposition

Bruno Viti, Elias Karabelas, Martin Holler

arxiv logopreprintMay 20 2025
Most machine learning-based image segmentation models produce pixel-wise confidence scores - typically derived from softmax outputs - that represent the model's predicted probability for each class label at every pixel. While this information can be particularly valuable in high-stakes domains such as medical imaging, these (uncalibrated) scores are heuristic in nature and do not constitute rigorous quantitative uncertainty estimates. Conformal prediction (CP) provides a principled framework for transforming heuristic confidence scores into statistically valid uncertainty estimates. However, applying CP directly to image segmentation ignores the spatial correlations between pixels, a fundamental characteristic of image data. This can result in overly conservative and less interpretable uncertainty estimates. To address this, we propose CONSIGN (Conformal Segmentation Informed by Spatial Groupings via Decomposition), a CP-based method that incorporates spatial correlations to improve uncertainty quantification in image segmentation. Our method generates meaningful prediction sets that come with user-specified, high-probability error guarantees. It is compatible with any pre-trained segmentation model capable of generating multiple sample outputs - such as those using dropout, Bayesian modeling, or ensembles. We evaluate CONSIGN against a standard pixel-wise CP approach across three medical imaging datasets and two COCO dataset subsets, using three different pre-trained segmentation models. Results demonstrate that accounting for spatial structure significantly improves performance across multiple metrics and enhances the quality of uncertainty estimates.

Detection of maxillary sinus pathologies using deep learning algorithms.

Aktuna Belgin C, Kurbanova A, Aksoy S, Akkaya N, Orhan K

pubmed logopapersMay 20 2025
Deep learning, a subset of machine learning, is widely utilized in medical applications. Identifying maxillary sinus pathologies before surgical interventions is crucial for ensuring successful treatment outcomes. Cone beam computed tomography (CBCT) is commonly employed for maxillary sinus evaluations due to its high resolution and lower radiation exposure. This study aims to assess the accuracy of artificial intelligence (AI) algorithms in detecting maxillary sinus pathologies from CBCT scans. A dataset comprising 1000 maxillary sinuses (MS) from 500 patients was analyzed using CBCT. Sinuses were categorized based on the presence or absence of pathology, followed by segmentation of the maxillary sinus. Manual segmentation masks were generated using the semiautomatic software ITK-SNAP, which served as a reference for comparison. A convolutional neural network (CNN)-based machine learning model was then implemented to automatically segment maxillary sinus pathologies from CBCT images. To evaluate segmentation accuracy, metrics such as the Dice similarity coefficient (DSC) and intersection over union (IoU) were utilized by comparing AI-generated results with human-generated segmentations. The automated segmentation model achieved a Dice score of 0.923, a recall of 0.979, an IoU of 0.887, an F1 score of 0.970, and a precision of 0.963. This study successfully developed an AI-driven approach for segmenting maxillary sinus pathologies in CBCT images. The findings highlight the potential of this method for rapid and accurate clinical assessment of maxillary sinus conditions using CBCT imaging.

MedBLIP: Fine-tuning BLIP for Medical Image Captioning

Manshi Limbu, Diwita Banerjee

arxiv logopreprintMay 20 2025
Medical image captioning is a challenging task that requires generating clinically accurate and semantically meaningful descriptions of radiology images. While recent vision-language models (VLMs) such as BLIP, BLIP2, Gemini and ViT-GPT2 show strong performance on natural image datasets, they often produce generic or imprecise captions when applied to specialized medical domains. In this project, we explore the effectiveness of fine-tuning the BLIP model on the ROCO dataset for improved radiology captioning. We compare the fine-tuned BLIP against its zero-shot version, BLIP-2 base, BLIP-2 Instruct and a ViT-GPT2 transformer baseline. Our results demonstrate that domain-specific fine-tuning on BLIP significantly improves performance across both quantitative and qualitative evaluation metrics. We also visualize decoder cross-attention maps to assess interpretability and conduct an ablation study to evaluate the contributions of encoder-only and decoder-only fine-tuning. Our findings highlight the importance of targeted adaptation for medical applications and suggest that decoder-only fine-tuning (encoder-frozen) offers a strong performance baseline with 5% lower training time than full fine-tuning, while full model fine-tuning still yields the best results overall.

Enhancing pathological myopia diagnosis: a bimodal artificial intelligence approach integrating fundus and optical coherence tomography imaging for precise atrophy, traction and neovascularisation grading.

Xu Z, Yang Y, Chen H, Han R, Han X, Zhao J, Yu W, Yang Z, Chen Y

pubmed logopapersMay 20 2025
Pathological myopia (PM) has emerged as a leading cause of global visual impairment, early detection and precise grading of PM are crucial for timely intervention. The atrophy, traction and neovascularisation (ATN) system is applied to define PM progression and stages with precision. This study focuses on constructing a comprehensive PM image dataset comprising both fundus and optical coherence tomography (OCT) images and developing a bimodal artificial intelligence (AI) classification model for ATN grading in PM. This single-centre retrospective cross-sectional study collected 2760 colour fundus photographs and matching OCT images of PM from January 2019 to November 2022 at Peking Union Medical College Hospital. Ophthalmology specialists labelled and inspected all paired images using the ATN grading system. The AI model used a ResNet-50 backbone and a multimodal multi-instance learning module to enhance interaction across instances from both modalities. Performance comparisons among single-modality fundus, OCT and bimodal AI models were conducted for ATN grading in PM. The bimodality model, dual-deep learning (DL), demonstrated superior accuracy in both detailed multiclassification and biclassification of PM, which aligns well with our observation from instance attention-weight activation maps. The area under the curve for severe PM using dual-DL was 0.9635 (95% CI 0.9380 to 0.9890), compared with 0.9359 (95% CI 0.9027 to 0.9691) for the solely OCT model and 0.9268 (95% CI 0.8915 to 0.9621) for the fundus model. Our novel bimodal AI multiclassification model for PM ATN staging proves accurate and beneficial for public health screening and prompt referral of PM patients.

The Role of Machine Learning to Detect Occult Neck Lymph Node Metastases in Early-Stage (T1-T2/N0) Oral Cavity Carcinomas.

Troise S, Ugga L, Esposito M, Positano M, Elefante A, Capasso S, Cuocolo R, Merola R, Committeri U, Abbate V, Bonavolontà P, Nocini R, Dell'Aversana Orabona G

pubmed logopapersMay 19 2025
Oral cavity carcinomas (OCCs) represent roughly 50% of all head and neck cancers. The risk of occult neck metastases for early-stage OCCs ranges from 15% to 35%, hence the need to develop tools that can support the diagnosis of detecting these neck metastases. Machine learning and radiomic features are emerging as effective tools in this field. Thus, the aim of this study is to demonstrate the effectiveness of radiomic features to predict the risk of occult neck metastases in early-stage (T1-T2/N0) OCCs. Retrospective study. A single-institution analysis (Maxillo-facial Surgery Unit, University of Naples Federico II). A retrospective analysis was conducted on 75 patients surgically treated for early-stage OCC. For all patients, data regarding TNM, in particular pN status after the histopathological examination, have been obtained and the analysis of radiomic features from MRI has been extrapolated. 56 patients confirmed N0 status after surgery, while 19 resulted in pN+. The radiomic features, extracted by a machine-learning algorithm, exhibited the ability to preoperatively discriminate occult neck metastases with a sensitivity of 78%, specificity of 83%, an AUC of 86%, accuracy of 80%, and a positive predictive value (PPV) of 63%. Our results seem to confirm that radiomic features, extracted by machine learning methods, are effective tools in detecting occult neck metastases in early-stage OCCs. The clinical relevance of this study is that radiomics could be used routinely as a preoperative tool to support diagnosis and to help surgeons in the surgical decision-making process, particularly regarding surgical indications for neck lymph node treatment.

Segmentation of temporomandibular joint structures on mri images using neural networks for diagnosis of pathologies

Maksim I. Ivanov, Olga E. Mendybaeva, Yuri E. Karyakin, Igor N. Glukhikh, Aleksey V. Lebedev

arxiv logopreprintMay 19 2025
This article explores the use of artificial intelligence for the diagnosis of pathologies of the temporomandibular joint (TMJ), in particular, for the segmentation of the articular disc on MRI images. The relevance of the work is due to the high prevalence of TMJ pathologies, as well as the need to improve the accuracy and speed of diagnosis in medical institutions. During the study, the existing solutions (Diagnocat, MandSeg) were analyzed, which, as a result, are not suitable for studying the articular disc due to the orientation towards bone structures. To solve the problem, an original dataset was collected from 94 images with the classes "temporomandibular joint" and "jaw". To increase the amount of data, augmentation methods were used. After that, the models of U-Net, YOLOv8n, YOLOv11n and Roboflow neural networks were trained and compared. The evaluation was carried out according to the Dice Score, Precision, Sensitivity, Specificity, and Mean Average Precision metrics. The results confirm the potential of using the Roboflow model for segmentation of the temporomandibular joint. In the future, it is planned to develop an algorithm for measuring the distance between the jaws and determining the position of the articular disc, which will improve the diagnosis of TMJ pathologies.

Effectiveness of Artificial Intelligence in detecting sinonasal pathology using clinical imaging modalities: a systematic review.

Petsiou DP, Spinos D, Martinos A, Muzaffar J, Garas G, Georgalas C

pubmed logopapersMay 19 2025
Sinonasal pathology can be complex and requires a systematic and meticulous approach. Artificial Intelligence (AI) has the potential to improve diagnostic accuracy and efficiency in sinonasal imaging, but its clinical applicability remains an area of ongoing research. This systematic review evaluates the methodologies and clinical relevance of AI in detecting sinonasal pathology through radiological imaging. Key search terms included "artificial intelligence," "deep learning," "machine learning," "neural network," and "paranasal sinuses,". Abstract and full-text screening was conducted using predefined inclusion and exclusion criteria. Data were extracted on study design, AI architectures used (e.g., Convolutional Neural Networks (CNN), Machine Learning classifiers), and clinical characteristics, such as imaging modality (e.g., Computed Tomography (CT), Magnetic Resonance Imaging (MRI)). A total of 53 studies were analyzed, with 85% retrospective, 68% single-center, and 92.5% using internal databases. CT was the most common imaging modality (60.4%), and chronic rhinosinusitis without nasal polyposis (CRSsNP) was the most studied condition (34.0%). Forty-one studies employed neural networks, with classification as the most frequent AI task (35.8%). Key performance metrics included Area Under the Curve (AUC), accuracy, sensitivity, specificity, precision, and F1-score. Quality assessment based on CONSORT-AI yielded a mean score of 16.0 ± 2. AI shows promise in improving sinonasal imaging interpretation. However, as existing research is predominantly retrospective and single-center, further studies are needed to evaluate AI's generalizability and applicability. More research is also required to explore AI's role in treatment planning and post-treatment prediction for clinical integration.
Page 47 of 56560 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.