Sort by:
Page 39 of 93924 results

Orbital CT deep learning models in thyroid eye disease rival medical specialists' performance in optic neuropathy prediction in a quaternary referral center and revealed impact of the bony walls.

Kheok SW, Hu G, Lee MH, Wong CP, Zheng K, Htoon HM, Lei Z, Tan ASM, Chan LL, Ooi BC, Seah LL

pubmed logopapersJul 1 2025
To develop and evaluate orbital CT deep learning (DL) models in optic neuropathy (ON) prediction in patients diagnosed with thyroid eye disease (TED), using partial versus entire 2D versus 3D images for input. Patients with TED ±ON diagnosed at a quaternary-level practice and who underwent orbital CT between 2002 and 2017 were included. DL models were developed using annotated CT data. The DL models were used to evaluate the hold-out test set. ON classification performances were compared between models and medical specialists, and saliency maps applied to randomized cases. 36/252 orbits in 126 TED patients (mean age, 51 years; 81 women) had clinically confirmed ON. With 2D image input for ON prediction, our models achieved (a) sensitivity 89%, AUC 0.86 on entire coronal orbital apex including bony walls, and (b) specificity 92%, AUC 0.79 on partial axial lateral orbital wall only annotations. ON classification performance was similar (<i>p</i> = 0.58) between DL model and medical specialists. DL models trained on 2D CT annotations rival medical specialists in ON classification, with potential to objectively enhance clinical triage for sight-saving intervention and incorporate model variants in the workflow to harness differential performance metrics.

The implementation of artificial intelligence in serial monitoring of post gamma knife vestibular schwannomas: A pilot study.

Singh M, Jester N, Lorr S, Briano A, Schwartz N, Mahajan A, Chiang V, Tommasini SM, Wiznia DH, Buono FD

pubmed logopapersJul 1 2025
Vestibular schwannomas (VS) are benign tumors that can lead to hearing loss, balance issues, and tinnitus. Gamma Knife Radiosurgery (GKS) is a common treatment for VS, aimed at halting tumor growth and preserving neurological function. Accurate monitoring of VS volume before and after GKS is essential for assessing treatment efficacy. To evaluate the accuracy of an artificial intelligence (AI) algorithm, originally developed to identify NF2-SWN-related VS, in segmenting non-NF2-SWN-related VS and detecting volume changes pre- and post-GKS. We hypothesize this AI algorithm, trained on NF2-SWN-related VS data, will accurately apply to non-NF2-SWN VS and VS treated with GKS. In this retrospective cohort study, we reviewed data from an established Gamma Knife database, identifying 16 patients who underwent GKS for VS and had pre- and post-GKS scans. Contrast-enhanced T1-weighted MRI scans were analyzed with both manual segmentation and the AI algorithm. DICE similarity coefficients were computed to compare AI and manual segmentations, and a paired t-test was used to assess statistical significance. Volume changes for pre- and post-GKS scans were calculated for both segmentation methods. The mean DICE score between AI and manual segmentations was 0.91 (range 0.79-0.97). Pre- and post-GKS DICE scores were 0.91 (range 0.79-0.97) and 0.92 (range 0.81-0.97), indicating high spatial overlap. AI-segmented VS volumes pre- and post-GKS were consistent with manual measurements, with high DICE scores indicating strong spatial overlap. The AI algorithm processed scans within 5 min, suggesting it offers a reliable, efficient alternative for clinical monitoring. DICE scores showed high similarity between manual and AI segmentations. The pre- and post-GKS VS volume percentage changes were also similar between manual and AI-segmented VS volumes, indicating that our AI algorithm can accurately detect changes in tumor growth.

Stratifying trigeminal neuralgia and characterizing an abnormal property of brain functional organization: a resting-state fMRI and machine learning study.

Wu M, Qiu J, Chen Y, Jiang X

pubmed logopapersJul 1 2025
Increasing evidence suggests that primary trigeminal neuralgia (TN), including classical TN (CTN) and idiopathic TN (ITN), share biological, neuropsychological, and clinical features, despite differing diagnostic criteria. Neuroimaging studies have shown neurovascular compression (NVC) differences in these disorders. However, changes in brain dynamics across these two TN subtypes remain unknown. The authors aimed to examine the functional connectivity differences in CTN, ITN, and pain-free controls. A total of 93 subjects, 50 TN patients and 43 pain-free controls, underwent resting-state functional magnetic resonance imaging (rs-fMRI). All TN patients underwent surgery, and the NVC type was verified. Functional connectivity and spontaneous brain activity were analyzed, and the significant alterations in rs-fMRI indices were selected to train classification models. The patients with TN showed increased connectivity between several brain regions, such as the medial prefrontal cortex (mPFC) and left planum temporale and decreased connectivity between the mPFC and left superior frontal gyrus. CTN patients exhibited a further reduction in connectivity between the left insular lobe and left occipital pole. Compared to controls, TN patients had heightened neural activity in the frontal regions. The CTN patients showed reduced activity in the right temporal pole compared to that in the ITN patients. These patterns effectively distinguished TN patients from controls, with an accuracy of 74.19% and an area under the receiver operating characteristic curve of 0.80. This study revealed alterations in rs-fMRI metrics in TN patients compared to those in controls and is the first to show differences between CTN and ITN. The support vector machine model of rs-fMRI indices exhibited moderate performance on discriminating TN patients from controls. These findings have unveiled potential biomarkers for TN and its subtypes, which can be used for additional investigation of the pathophysiology of the disease.

DMCIE: Diffusion Model with Concatenation of Inputs and Errors to Improve the Accuracy of the Segmentation of Brain Tumors in MRI Images

Sara Yavari, Rahul Nitin Pandya, Jacob Furst

arxiv logopreprintJul 1 2025
Accurate segmentation of brain tumors in MRI scans is essential for reliable clinical diagnosis and effective treatment planning. Recently, diffusion models have demonstrated remarkable effectiveness in image generation and segmentation tasks. This paper introduces a novel approach to corrective segmentation based on diffusion models. We propose DMCIE (Diffusion Model with Concatenation of Inputs and Errors), a novel framework for accurate brain tumor segmentation in multi-modal MRI scans. We employ a 3D U-Net to generate an initial segmentation mask, from which an error map is generated by identifying the differences between the prediction and the ground truth. The error map, concatenated with the original MRI images, are used to guide a diffusion model. Using multimodal MRI inputs (T1, T1ce, T2, FLAIR), DMCIE effectively enhances segmentation accuracy by focusing on misclassified regions, guided by the original inputs. Evaluated on the BraTS2020 dataset, DMCIE outperforms several state-of-the-art diffusion-based segmentation methods, achieving a Dice Score of 93.46 and an HD95 of 5.94 mm. These results highlight the effectiveness of error-guided diffusion in producing precise and reliable brain tumor segmentations.

Effective connectivity between the cerebellum and fronto-temporal regions correctly classify major depressive disorder: fMRI study using a multi-site dataset.

Dai P, Huang K, Shi Y, Xiong T, Zhou X, Liao S, Huang Z, Yi X, Grecucci A, Chen BT

pubmed logopapersJul 1 2025
Major Depressive Disorder (MDD) diagnosis mainly relies on subjective self-reporting and clinical assessments. Resting-state functional magnetic resonance imaging (rs-fMRI) and its analysis of Effective Connectivity (EC) offer a quantitative approach to understand the directional interactions between brain regions, presenting a potential objective method for MDD classification. Granger causality analysis was used to extract EC features from a large, multi-site rs-fMRI dataset of MDD patients. The ComBat algorithm was applied to adjust for site differences, while multivariate linear regression was employed to control for age and sex differences. Discriminative EC features for MDD were identified using two-sample t-tests and model-based feature selection, with the LightGBM algorithm being used for classification. The performance and generalizability of the model was evaluated using nested five-fold cross-validation and tested for generalizability on an independent dataset. Ninety-seven EC features belonging to the cerebellum and front-temporal regions were identified as highly discriminative for MDD. The classification model using these features achieved an accuracy of 94.35 %, with a sensitivity of 93.52 % and specificity of 95.25 % in cross-validation. Generalization of the model to an independent dataset resulted in an accuracy of 94.74 %, sensitivity of 90.59 %, and specificity of 96.75 %. The study demonstrates that EC features from rs-fMRI can effectively discriminate MDD from healthy controls, suggesting that EC analysis could be a valuable tool in assisting the clinical diagnosis of MDD. This method shows promise in enhancing the objectivity of MDD diagnosis through the use of neuroimaging biomarkers.

Novel artificial intelligence approach in neurointerventional practice: Preliminary findings on filter movement and ischemic lesions in carotid artery stenting.

Sagawa H, Sakakura Y, Hanazawa R, Takahashi S, Wakabayashi H, Fujii S, Fujita K, Hirai S, Hirakawa A, Kono K, Sumita K

pubmed logopapersJul 1 2025
Embolic protection devices (EPDs) used during carotid artery stenting (CAS) are crucial in reducing ischemic complications. Although minimizing the filter-type EPD movement is considered important, limited research has demonstrated this practice. We used an artificial intelligence (AI)-based device recognition technology to investigate the correlation between filter movements and ischemic complications. We retrospectively studied 28 consecutive patients who underwent CAS using FilterWire EZ (Boston Scientific, Marlborough, MA, USA) from April 2022 to September 2023. Clinical data, procedural videos, and postoperative magnetic resonance imaging were collected. An AI-based device detection function in the Neuro-Vascular Assist (iMed Technologies, Tokyo, Japan) was used to quantify the filter movement. Multivariate proportional odds model analysis was performed to explore the correlations between postoperative diffusion-weighted imaging (DWI) hyperintense lesions and potential ischemic risk factors, including filter movement. In total, 23 patients had sufficient information and were eligible for quantitative analysis. Fourteen patients (60.9 %) showed postoperative DWI hyperintense lesions. Multivariate analysis revealed significant associations between filter movement distance (odds ratio, 1.01; 95 % confidence interval, 1.00-1.02; p = 0.003) and high-intensity signals in time-of-flight magnetic resonance angiography with DWI hyperintense lesions. Age, symptomatic status, and operative time were not significantly correlated. Increased filter movement during CAS was correlated with a higher incidence of postoperative DWI hyperintense lesions. AI-based quantitative evaluation of endovascular techniques may enable demonstration of previously unproven recommendations. To the best of our knowledge, this is the first study to use an AI system for quantitative evaluation to address real-world clinical issues.

CASCADE-FSL: Few-shot learning for collateral evaluation in ischemic stroke.

Aktar M, Tampieri D, Xiao Y, Rivaz H, Kersten-Oertel M

pubmed logopapersJul 1 2025
Assessing collateral circulation is essential in determining the best treatment for ischemic stroke patients as good collaterals lead to different treatment options, i.e., thrombectomy, whereas poor collaterals can adversely affect the treatment by leading to excess bleeding and eventually death. To reduce inter- and intra-rater variability and save time in radiologist assessments, computer-aided methods, mainly using deep neural networks, have gained popularity. The current literature demonstrates effectiveness when using balanced and extensive datasets in deep learning; however, such data sets are scarce for stroke, and the number of data samples for poor collateral cases is often limited compared to those for good collaterals. We propose a novel approach called CASCADE-FSL to distinguish poor collaterals effectively. Using a small, unbalanced data set, we employ a few-shot learning approach for training using a 2D ResNet-50 as a backbone and designating good and intermediate cases as two normal classes. We identify poor collaterals as anomalies in comparison to the normal classes. Our novel approach achieves an overall accuracy, sensitivity, and specificity of 0.88, 0.88, and 0.89, respectively, demonstrating its effectiveness in addressing the imbalanced dataset challenge and accurately identifying poor collateral circulation cases.

Deformable image registration with strategic integration pyramid framework for brain MRI.

Zhang Y, Zhu Q, Xie B, Li T

pubmed logopapersJul 1 2025
Medical image registration plays a crucial role in medical imaging, with a wide range of clinical applications. In this context, brain MRI registration is commonly used in clinical practice for accurate diagnosis and treatment planning. In recent years, deep learning-based deformable registration methods have achieved remarkable results. However, existing methods have not been flexible and efficient in handling the feature relationships of anatomical structures at different levels when dealing with large deformations. To address this limitation, we propose a novel strategic integration registration network based on the pyramid structure. Our strategy mainly includes two aspects of integration: fusion of features at different scales, and integration of different neural network structures. Specifically, we design a CNN encoder and a Transformer decoder to efficiently extract and enhance both global and local features. Moreover, to overcome the error accumulation issue inherent in pyramid structures, we introduce progressive optimization iterations at the lowest scale for deformation field generation. This approach more efficiently handles the spatial relationships of images while improving accuracy. We conduct extensive evaluations across multiple brain MRI datasets, and experimental results show that our method outperforms other deep learning-based methods in terms of registration accuracy and robustness.

Auto-Segmentation via deep-learning approaches for the assessment of flap volume after reconstructive surgery or radiotherapy in head and neck cancer.

Thariat J, Mesbah Z, Chahir Y, Beddok A, Blache A, Bourhis J, Fatallah A, Hatt M, Modzelewski R

pubmed logopapersJul 1 2025
Reconstructive flap surgery aims to restore the substance and function losses associated with tumor resection. Automatic flap segmentation could allow quantification of flap volume and correlations with functional outcomes after surgery or post-operative RT (poRT). Flaps being ectopic tissues of various components (fat, skin, fascia, muscle, bone) of various volume, shape and texture, the anatomical modifications, inflammation and edema of the postoperative bed make the segmentation task challenging. We built a artificial intelligence-enabled automatic soft-tissue flap segmentation method from CT scans of Head and Neck Cancer (HNC) patients. Ground-truth flap segmentation masks were delineated by two experts on postoperative CT scans of 148 HNC patients undergoing poRT. All CTs and flaps (free or pedicled, soft tissue only or bone) were kept, including those with artefacts, to ensure generalizability. A deep-learning nnUNetv2 framework was built using Hounsfield Units (HU) windowing to mimic radiological assessment. A transformer-based 2D "Segment Anything Model" (MedSAM) was also built and fine-tuned to medical CTs. Models were compared with the Dice Similarity Coefficient (DSC) and Hausdorff Distance 95th percentile (HD95) metrics. Flaps were in the oral cavity (N = 102), oropharynx (N = 26) or larynx/hypopharynx (N = 20). There were free flaps (N = 137), pedicled flaps (N = 11), of soft tissue flap-only (N = 92), reconstructed bone (N = 42), or bone resected without reconstruction (N = 40). The nnUNet-windowing model outperformed the nnUNetv2 and MedSam models. It achieved mean DSCs of 0.69 and HD95 of 25.6 mm using 5-fold cross-validation. Segmentation performed better in the absence of artifacts, and rare situations such as pedicled flaps, laryngeal primaries and resected bone without bone reconstruction (p < 0.01). Automatic flap segmentation demonstrates clinical performances that allow to quantify spontaneous and radiation-induced volume shrinkage of flaps. Free flaps achieved excellent performances; rare situations will be addressed by fine-tuning the network.

The power spectrum map of gyro-sulcal functional activity dissociation in macaque brains.

Sun Y, Zhou J, Mao W, Zhang W, Zhao B, Duan X, Zhang S, Zhang T, Jiang X

pubmed logopapersJul 1 2025
Nonhuman primates, particularly rhesus macaques, have served as crucial animal models for investigating complex brain functions. While previous studies have explored neural activity features in macaques, the gyro-sulcal functional dissociation characteristics are largely unknown. In this study, we employ a deep learning model named one-dimensional convolutional neural network to differentiate resting state functional magnetic resonance imaging signals between gyri and sulci in macaque brains, and further investigate the frequency-specific dissociations between gyri and sulci inferred from the power spectral density of resting state functional magnetic resonance imaging. Experimental results based on a large cohort of 440 macaques from two independent sites demonstrate substantial frequency-specific dissociation between gyral and sulcal signals at both whole-brain and regional levels. The magnitude of gyral power spectral density is significantly larger than that of sulcal power spectral density within the range of 0.01 to 0.1 Hz, suggesting that gyri and sulci may play distinct roles as the global hubs and local processing units for functional activity transmission and interaction in macaque brains. In conclusion, our study has established one of the first power spectrum maps of gyro-sulcal functional activity dissociation in macaque brains, providing a novel perspective for systematically exploring the neural mechanism of functional dissociation in mammalian brains.
Page 39 of 93924 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.