Sort by:
Page 35 of 55541 results

Lightweight Physics-Informed Zero-Shot Ultrasound Plane Wave Denoising

Hojat Asgariandehkordi, Mostafa Sharifzadeh, Hassan Rivaz

arxiv logopreprintJun 26 2025
Ultrasound Coherent Plane Wave Compounding (CPWC) enhances image contrast by combining echoes from multiple steered transmissions. While increasing the number of angles generally improves image quality, it drastically reduces the frame rate and can introduce blurring artifacts in fast-moving targets. Moreover, compounded images remain susceptible to noise, particularly when acquired with a limited number of transmissions. We propose a zero-shot denoising framework tailored for low-angle CPWC acquisitions, which enhances contrast without relying on a separate training dataset. The method divides the available transmission angles into two disjoint subsets, each used to form compound images that include higher noise levels. The new compounded images are then used to train a deep model via a self-supervised residual learning scheme, enabling it to suppress incoherent noise while preserving anatomical structures. Because angle-dependent artifacts vary between the subsets while the underlying tissue response is similar, this physics-informed pairing allows the network to learn to disentangle the inconsistent artifacts from the consistent tissue signal. Unlike supervised methods, our model requires no domain-specific fine-tuning or paired data, making it adaptable across anatomical regions and acquisition setups. The entire pipeline supports efficient training with low computational cost due to the use of a lightweight architecture, which comprises only two convolutional layers. Evaluations on simulation, phantom, and in vivo data demonstrate superior contrast enhancement and structure preservation compared to both classical and deep learning-based denoising methods.

Dose-aware denoising diffusion model for low-dose CT.

Kim S, Kim BJ, Baek J

pubmed logopapersJun 26 2025
Low-dose computed tomography (LDCT) denoising plays an important role in medical imaging for reducing the radiation dose to patients. Recently, various data-driven and diffusion-based deep learning (DL) methods have been developed and shown promising results in LDCT denoising. However, challenges remain in ensuring generalizability to different datasets and mitigating uncertainty from stochastic sampling. In this paper, we introduce a novel dose-aware diffusion model that effectively reduces CT image noise while maintaining structural fidelity and being generalizable to different dose levels.
Approach: Our approach employs a physics-based forward process with continuous timesteps, enabling flexible representation of diverse noise levels. We incorporate a computationally efficient noise calibration module in our diffusion framework that resolves misalignment between intermediate results and their corresponding timesteps. Furthermore, we present a simple yet effective method for estimating appropriate timesteps for unseen LDCT images, allowing generalization to an unknown, arbitrary dose levels.
Main Results: Both qualitative and quantitative evaluation results on Mayo Clinic datasets show that the proposed method outperforms existing denoising methods in preserving the noise texture and restoring anatomical structures. The proposed method also shows consistent results on different dose levels and an unseen dataset.
Significance: We propose a novel dose-aware diffusion model for LDCT denoising, aiming to address the generalization and uncertainty issues of existing diffusion-based DL methods. Our experimental results demonstrate the effectiveness of the proposed method across different dose levels. We expect that our approach can provide a clinically practical solution for LDCT denoising with its high structural fidelity and computational efficiency.

Self-supervised learning for low-dose CT image denoising method based on guided image filtering.

He Y, Luo X, Wang C, Yu W

pubmed logopapersJun 25 2025
Low-dose computed tomography (LDCT) images suffer from severe noise due to reduced radiation exposure. Most existing deep learning-based denoising methods require supervised learning with paired training data that is difficult to obtain. To address this limitation, we aim to develop a denoising method that does not rely on paired normal-dose CT (NDCT) data.
Approach: We propose a self-supervised denoising method based on guided image filtering (GIF)
that requires only LDCT images for training. The method first applies GIF to generate pseudo-labels from LDCT images, enabling the network to learn noise distributions between inputs and pseudo-labels for denoising, without paired data. Then, an attention gate mechanism is embedded in the decoder stage of a residual network to further enhance denoising performance.
Main Results: Experimental results demonstrate that the proposed method achieves superior performance compared to state-of-the-art unsupervised denoising networks, transformer-based denoising model and post-processing methods, in terms of both visual quality and quantitative metrics. Furthermore, ablation studies are conducted to analyze the impact of different attention mechanisms and the number of attention gate mechanisms, showing that the proposed network architecture achieves optimal performance.
Significance: This work leverages self-supervised learning with GIF to generate pseudo-labels, enabling LDCT denoising without paired data. The embedded attention gate mechanism, supported by detailed ablation analysis, further enhances denoising performance by improving feature focus and structural preservation.

Development and in silico imaging trial evaluation of a deep-learning-based transmission-less attenuation compensation method for DaT SPECT

Zitong Yu, Md Ashequr Rahman, Zekun Li, Chunwei Ying, Hongyu An, Tammie L. S. Benzinger, Richard Laforest, Jingqin Luo, Scott A. Norris, Abhinav K. Jha

arxiv logopreprintJun 25 2025
Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus derived from DaT-single-photon emission computed tomography (SPECT) images are being investigated as biomarkers to diagnose, assess disease status, and track the progression of Parkinsonism. Reliable quantification from DaT-SPECT images requires performing attenuation compensation (AC), typically with a separate X-ray CT scan. Such CT-based AC (CTAC) has multiple challenges, a key one being the non-availability of X-ray CT component on many clinical SPECT systems. Even when a CT is available, the additional CT scan leads to increased radiation dose, costs, and complexity, potential quantification errors due to SPECT-CT misalignment, and higher training and regulatory requirements. To overcome the challenges with the requirement of a CT scan for AC in DaT SPECT, we propose a deep learning (DL)-based transmission-less AC method for DaT-SPECT (DaT-CTLESS). An in silico imaging trial, titled ISIT-DaT, was designed to evaluate the performance of DaT-CTLESS on the regional uptake quantification task. We observed that DaT-CTLESS yielded a significantly higher correlation with CTAC than that between UAC and CTAC on the regional DaT uptake quantification task. Further, DaT-CLTESS had an excellent agreement with CTAC on this task, significantly outperformed UAC in distinguishing patients with normal versus reduced putamen SBR, yielded good generalizability across two scanners, was generally insensitive to intra-regional uptake heterogeneity, demonstrated good repeatability, exhibited robust performance even as the size of the training data was reduced, and generally outperformed the other considered DL methods on the task of quantifying regional uptake across different training dataset sizes. These results provide a strong motivation for further clinical evaluation of DaT-CTLESS.

Optimization-based image reconstruction regularized with inter-spectral structural similarity for limited-angle dual-energy cone-beam CT.

Peng J, Wang T, Xie H, Qiu RLJ, Chang CW, Roper J, Yu DS, Tang X, Yang X

pubmed logopapersJun 25 2025

Limited-angle dual-energy (DE) cone-beam CT (CBCT) is considered as a potential solution to achieve fast and low-dose DE imaging on current CBCT scanners without hardware modification. However, its clinical implementations are hindered by the challenging image reconstruction from limited-angle projections. While optimization-based and deep learning-based methods have been proposed for image reconstruction, their utilization is limited by the requirement for X-ray spectra measurement or paired datasets for model training. This work aims to facilitate the clinical applications of fast and low-dose DE-CBCT by developing a practical solution for image reconstruction in limited-angle DE-CBCT.
Methods:
An inter-spectral structural similarity-based regularization was integrated into the iterative image reconstruction in limited-angle DE-CBCT. By enforcing the similarity between the DE images, limited-angle artifacts were efficiently reduced in the reconstructed DECBCT images. The proposed method was evaluated using two physical phantoms and three digital phantoms, demonstrating its efficacy in quantitative DECBCT imaging.
Results:
In all the studies, the proposed method achieves accurate image reconstruction without visible residual artifacts from limited-angle DE-CBCT projection data. In the digital phantom studies, the proposed method reduces the mean-absolute-error (MAE) from 309/290 HU to 14/20 HU, increases the peak signal-to-noise ratio (PSNR) from 40/39 dB to 70/67 dB, and improves the structural similarity index measurement (SSIM) from 0.74/0.72 to 1.00/1.00.
Conclusions:
The proposed method achieves accurate optimization-based image reconstruction in limited-angle DE-CBCT, showing great practical value in clinical implementations of limited-angle DE-CBCT.&#xD.

Assessment of Robustness of MRI Radiomic Features in the Abdomen: Impact of Deep Learning Reconstruction and Accelerated Acquisition.

Zhong J, Xing Y, Hu Y, Liu X, Dai S, Ding D, Lu J, Yang J, Song Y, Lu M, Nickel D, Lu W, Zhang H, Yao W

pubmed logopapersJun 25 2025
The objective of this study is to investigate the impact of deep learning reconstruction and accelerated acquisition on reproducibility and variability of radiomic features in abdominal MRI. Seventeen volunteers were prospectively included to undergo abdominal MRI on a 3-T scanner for axial T2-weighted, axial T2-weighted fat-suppressed, and coronal T2-weighted sequences. Each sequence was scanned for four times using clinical reference acquisition with standard reconstruction, clinical reference acquisition with deep learning reconstruction, accelerated acquisition with standard reconstruction, and accelerated acquisition with deep learning reconstruction, respectively. The regions of interest were drawn for ten anatomical sites with rigid registrations. Ninety-three radiomic features were extracted via PyRadiomics after z-score normalization. The reproducibility was evaluated using clinical reference acquisition with standard reconstruction as reference by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability among four scans was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Our study found that the median (first and third quartile) of overall ICC and CCC values were 0.451 (0.305, 0.583) and 0.450 (0.304, 0.582). The overall percentage of radiomic features with ICC > 0.90 and CCC > 0.90 was 8.1% and 8.1%, and was considered acceptable. The median (first and third quartile) of overall CV and QCD values was 9.4% (4.9%, 17.2%) and 4.9% (2.5%, 9.7%). The overall percentage of radiomic features with CV < 10% and QCD < 10% was 51.9% and 75.0%, and was considered acceptable. Without respect to clinical significance, deep learning reconstruction and accelerated acquisition led to a poor reproducibility of radiomic features, but more than a half of the radiomic features varied within an acceptable range.

[Advances in low-dose cone-beam computed tomography image reconstruction methods based on deep learning].

Shi J, Song Y, Li G, Bai S

pubmed logopapersJun 25 2025
Cone-beam computed tomography (CBCT) is widely used in dentistry, surgery, radiotherapy and other medical fields. However, repeated CBCT scans expose patients to additional radiation doses, increasing the risk of secondary malignant tumors. Low-dose CBCT image reconstruction technology, which employs advanced algorithms to reduce radiation dose while enhancing image quality, has emerged as a focal point of recent research. This review systematically examined deep learning-based methods for low-dose CBCT reconstruction. It compared different network architectures in terms of noise reduction, artifact removal, detail preservation, and computational efficiency, covering three approaches: image-domain, projection-domain, and dual-domain techniques. The review also explored how emerging technologies like multimodal fusion and self-supervised learning could enhance these methods. By summarizing the strengths and weaknesses of current approaches, this work provides insights to optimize low-dose CBCT algorithms and support their clinical adoption.

NAADA: A Noise-Aware Attention Denoising Autoencoder for Dental Panoramic Radiographs

Khuram Naveed, Bruna Neves de Freitas, Ruben Pauwels

arxiv logopreprintJun 24 2025
Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.

From Faster Frames to Flawless Focus: Deep Learning HASTE in Postoperative Single Sequence MRI.

Hosse C, Fehrenbach U, Pivetta F, Malinka T, Wagner M, Walter-Rittel T, Gebauer B, Kolck J, Geisel D

pubmed logopapersJun 24 2025
This study evaluates the feasibility of a novel deep learning-accelerated half-fourier single-shot turbo spin-echo sequence (HASTE-DL) compared to the conventional HASTE sequence (HASTE<sub>S</sub>) in postoperative single-sequence MRI for the detection of fluid collections following abdominal surgery. As small fluid collections are difficult to visualize using other techniques, HASTE-DL may offer particular advantages in this clinical context. A retrospective analysis was conducted on 76 patients (mean age 65±11.69 years) who underwent abdominal MRI for suspected septic foci following abdominal surgery. Imaging was performed using 3-T MRI scanners, and both sequences were analyzed in terms of image quality, contrast, sharpness, and artifact presence. Quantitative assessments focused on fluid collection detectability, while qualitative assessments evaluated visualization of critical structures. Inter-reader agreement was measured using Cohen's kappa coefficient, and statistical significance was determined with the Mann-Whitney U test. HASTE-DL achieved a 46% reduction in scan time compared to HASTE<sub>S</sub>, while significantly improving overall image quality (p<0.001), contrast (p<0.001), and sharpness (p<0.001). The inter-reader agreement for HASTE-DL was excellent (κ=0.960), with perfect agreement on overall image quality and fluid collection detection (κ=1.0). Fluid detectability and characterization scores were higher for HASTE-DL, and visualization of critical structures was significantly enhanced (p<0.001). No relevant artifacts were observed in either sequence. HASTE-DL offers superior image quality, improved visualization of critical structures, such as drainages, vessels, bile and pancreatic ducts, and reduced acquisition time, making it an effective alternative to the standard HASTE sequence, and a promising complementary tool in the postoperative imaging workflow.

Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net

Klara Leffler, Luigi Tommaso Luppino, Samuel Kuttner, Karin Söderkvist, Jan Axelsson

arxiv logopreprintJun 24 2025
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
Page 35 of 55541 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.