Sort by:
Page 33 of 74733 results

Characterization of hepatocellular carcinoma with CT with deep learning reconstruction compared with iterative reconstruction and 3-Tesla MRI.

Malthiery C, Hossu G, Ayav A, Laurent V

pubmed logopapersJul 1 2025
This study compared the characteristics of lesions suspicious for hepatocellular carcinoma (HCC) and their LI-RADS classifications in adaptive statistical iterative reconstruction (ASIR) and deep learning reconstruction (DLR) to those of MR images, along with radiologist confidence. This prospective single-center trial included patients who underwent four-phase liver CT and multiphasic contrast-enhanced MRI within 7 days from February to August 2023. The lesion characteristics, LI-RADS classifications and confidence scores according to two radiologists on the ASIR, DLR and MRI techniques were compared. If the patient had at least one lesion, he was included in the HCC group, otherwise in the non-HCC group. MRI being the technique with the best sensitivity, concordance of lesions characteristics and LI-RADS classifications were calculated by weighted kappa between the ASIR and MRI and between the DLR and MRI. The confidence scores are expressed as the means and standard deviations. Eighty-nine patients were enrolled, 52 in the HCC group (67 years ± 9 [mean ± SD], 46 men) and 37 in the non-HCC group (68 years ± 9, 33 men). The concordance coefficient between the LI-RADS classification by ASIR and MRI was 0.64 [0.52; 0.76], showing good agreement, that by DLR and MRI was 0.83 [0.73; 0.92], showing excellent agreement. The diagnostic confidence in ASIR was 3.31 ± 0.95 (mean ± SD) and 3.0 ± 1.11, that in the DLR was 3.9 ± 0.88 and 4.11 ± 0.75, that in the MRI was 4.46 ± 0.80 and 4.57 ± 0.80. DLR provided excellent LI-RADS classification concordance with MRI, whereas ASIR provided good concordance. The radiologists' confidence was greater in the DLR than in the ASIR but remained highest in the MR group. Question Does the use of deep learning reconstructions (DLR) improve LI-RADS classification of suspicious hepatocellular carcinoma lesions compared to adaptive statistical iterative reconstructions (ASIR)? Findings DLR demonstrated superior concordance of LI-RADS classification with MRI compared to ASIR. It also provided greater diagnostic confidence than ASIR. Clinical relevance The use of DLR enhances radiologists' ability to visualize and characterize lesions suspected of being HCC, as well as their LI-RADS classification. Moreover, it also boosts their confidence in interpreting these images.

Mechanically assisted non-invasive ventilation for liver SABR: Improve CBCT, treat more accurately.

Pierrard J, Audag N, Massih CA, Garcia MA, Moreno EA, Colot A, Jardinet S, Mony R, Nevez Marques AF, Servaes L, Tison T, den Bossche VV, Etume AW, Zouheir L, Ooteghem GV

pubmed logopapersJul 1 2025
Cone-beam computed tomography (CBCT) for image-guided radiotherapy (IGRT) during liver stereotactic ablative radiotherapy (SABR) is degraded by respiratory motion artefacts, potentially jeopardising treatment accuracy. Mechanically assisted non-invasive ventilation-induced breath-hold (MANIV-BH) can reduce these artefacts. This study compares MANIV-BH and free-breathing CBCTs regarding image quality, IGRT variability, automatic registration accuracy, and deep-learning auto-segmentation performance. Liver SABR CBCTs were presented blindly to 14 operators: 25 patients with FB and 25 with MANIV-BH. They rated CBCT quality and IGRT ease (rigid registration with planning CT). Interoperator IGRT variability was compared between FB and MANIV-BH. Automatic gross tumour volume (GTV) mapping accuracy was compared using automatic rigid registration and image-guided deformable registration. Deep-learning organ-at-risk (OAR) auto-segmentation was rated by an operator, who recorded the time dedicated for manual correction of these volumes. MANIV-BH significantly improved CBCT image quality ("Excellent"/"Good": 83.4 % versus 25.4 % with FB, p < 0.001), facilitated IGRT ("Very easy"/"Easy": 68.0 % versus 38.9 % with FB, p < 0.001), and reduced IGRT variability, particularly for trained operators (overall variability of 3.2 mm versus 4.6 mm with FB, p = 0.010). MANIV-BH improved deep-learning auto-segmentation performance (80.0 % rated "Excellent"/"Good" versus 4.0 % with FB, p < 0.001), and reduced median manual correction time by 54.2 % compared to FB (p < 0.001). However, automatic GTV mapping accuracy was not significantly different between MANIV-BH and FB. In liver SABR, MANIV-BH significantly improves CBCT quality, reduces interoperator IGRT variability, and enhances OAR auto-segmentation. Beyond being safe and effective for respiratory motion mitigation, MANIV increases accuracy during treatment delivery, although its implementation requires resources.

MRI radiomics model for predicting tumor immune microenvironment types and efficacy of anti-PD-1/PD-L1 therapy in hepatocellular carcinoma.

Zhang R, Peng W, Wang Y, Jiang Y, Wang J, Zhang S, Li Z, Shi Y, Chen F, Feng Z, Xiao W

pubmed logopapersJul 1 2025
To improve the prediction of immune checkpoint inhibitors (ICIs) efficacy in hepatocellular carcinoma (HCC), this study categorized the tumor immune microenvironment (TIME) into two types: immune-activated (IA), characterized by a high CD8 + score and high PD-L1 combined positive score (CPS), and non-immune-activated (NIA), encompassing all other conditions. We aimed to develop an MRI-based radiomics model to predict TIME types and validate its predictive capability for ICIs efficacy in HCC patients receiving anti-PD-1/PD-L1 therapy. The study included 200 HCC patients who underwent preoperative/pretreatment multiparametric contrast-enhanced MRI (Cohort 1: 168 HCC patients with hepatectomy from two centres; Cohort 2: 42 advanced HCC patients on anti-PD-1/PD-L1 therapy). In Cohort 1, after feature selection, clinical, intratumoral radiomics, peritumoral radiomics, combined radiomics, and clinical-radiomics models were established using machine learning algorithms. In cohort 2, the clinical-radiomics model's predictive ability for ICIs efficacy was assessed. In Cohort 1, the AUC values for intratumoral, peritumoral, and combined radiomics models were 0.825, 0.809, and 0.868, respectively, in the internal validation set, and 0.73, 0.759, and 0.822 in the external validation set; the clinical-radiomics model incorporating neutrophil-to-lymphocyte ratio, tumor size, and combined radiomics score achieved an AUC of 0.887 in the internal validation set, outperforming clinical model (P = 0.049), and an AUC of 0.837 in the external validation set. In cohort 2, the clinical-radiomics model stratified patients into low- and high-score groups, demonstrating a significant difference in objective response rate (p = 0.003) and progression-free survival (p = 0.031). The clinical-radiomics model is effective in predicting TIME types and efficacy of ICIs in HCC, potentially aiding in treatment decision-making.

A quantitative tumor-wide analysis of morphological heterogeneity of colorectal adenocarcinoma.

Dragomir MP, Popovici V, Schallenberg S, Čarnogurská M, Horst D, Nenutil R, Bosman F, Budinská E

pubmed logopapersJul 1 2025
The intertumoral and intratumoral heterogeneity of colorectal adenocarcinoma (CRC) at the morphologic level is poorly understood. Previously, we identified morphological patterns associated with CRC molecular subtypes and their distinct molecular motifs. Here we aimed to evaluate the heterogeneity of these patterns across CRC. Three pathologists evaluated dominant, secondary, and tertiary morphology on four sections from four different FFPE blocks per tumor in a pilot set of 22 CRCs. An AI-based image analysis tool was trained on these tumors to evaluate the morphologic heterogeneity on an extended set of 161 stage I-IV primary CRCs (n = 644 H&E sections). We found that most tumors had two or three different dominant morphotypes and the complex tubular (CT) morphotype was the most common. The CT morphotype showed no combinatorial preferences. Desmoplastic (DE) morphotype was rarely dominant and rarely combined with other dominant morphotypes. Mucinous (MU) morphotype was mostly combined with solid/trabecular (TB) and papillary (PP) morphotypes. Most tumors showed medium or high heterogeneity, but no associations were found between heterogeneity and clinical parameters. A higher proportion of DE morphotype was associated with higher T-stage, N-stage, distant metastases, AJCC stage, and shorter overall survival (OS) and relapse-free survival (RFS). A higher proportion of MU morphotype was associated with higher grade, right side, and microsatellite instability (MSI). PP morphotype was associated with earlier T- and N-stage, absence of metastases, and improved OS and RFS. CT was linked to left side, lower grade, and better survival in stage I-III patients. MSI tumors showed higher proportions of MU and TB, and lower CT and PP morphotypes. These findings suggest that morphological shifts accompany tumor progression and highlight the need for extensive sampling and AI-based analysis. In conclusion, we observed unexpectedly high intratumoral morphological heterogeneity of CRC and found that it is not heterogeneity per se, but the proportions of morphologies that are associated with clinical outcomes.

Generative Artificial Intelligence in Prostate Cancer Imaging.

Haque F, Simon BD, Özyörük KB, Harmon SA, Türkbey B

pubmed logopapersJul 1 2025
Prostate cancer (PCa) is the second most common cancer in men and has a significant health and social burden, necessitating advances in early detection, prognosis, and treatment strategies. Improvement in medical imaging has significantly impacted early PCa detection, characterization, and treatment planning. However, with an increasing number of patients with PCa and comparatively fewer PCa imaging experts, interpreting large numbers of imaging data is burdensome, time-consuming, and prone to variability among experts. With the revolutionary advances of artificial intelligence (AI) in medical imaging, image interpretation tasks are becoming easier and exhibit the potential to reduce the workload on physicians. Generative AI (GenAI) is a recently popular sub-domain of AI that creates new data instances, often to resemble patterns and characteristics of the real data. This new field of AI has shown significant potential for generating synthetic medical images with diverse and clinically relevant information. In this narrative review, we discuss the basic concepts of GenAI and cover the recent application of GenAI in the PCa imaging domain. This review will help the readers understand where the PCa research community stands in terms of various medical image applications like generating multi-modal synthetic images, image quality improvement, PCa detection, classification, and digital pathology image generation. We also address the current safety concerns, limitations, and challenges of GenAI for technical and clinical adaptation, as well as the limitations of current literature, potential solutions, and future directions with GenAI for the PCa community.

Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Grosu S, Fabritius MP, Winkelmann M, Puhr-Westerheide D, Ingenerf M, Maurus S, Graser A, Schulz C, Knösel T, Cyran CC, Ricke J, Kazmierczak PM, Ingrisch M, Wesp P

pubmed logopapersJul 1 2025
Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management. Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection. After a primary unassisted reading based on current guidelines, a second reading with access to the classification of a radiomics-based random-forest AI-model labelling each polyp as "non-adenomatous" or "adenomatous" was performed. Performance was evaluated using polyp histopathology as the reference standard. 77 polyps in 59 patients comprising 118 polyp image series (47% supine position, 53% prone position) were evaluated unassisted and AI-assisted by five independent board-certified radiologists, resulting in a total of 1180 readings (subsequent polypectomy: yes or no). AI-assisted readings had higher accuracy (76% +/- 1% vs. 84% +/- 1%), sensitivity (78% +/- 6% vs. 85% +/- 1%), and specificity (73% +/- 8% vs. 82% +/- 2%) in selecting polyps eligible for polypectomy (p < 0.001). Inter-reader agreement was improved in the AI-assisted readings (Fleiss' kappa 0.69 vs. 0.92). AI-based characterisation of colorectal polyps at CT colonography as a second reader might enable a more precise selection of polyps eligible for subsequent endoscopic resection. However, further studies are needed to confirm this finding and histopathologic polyp evaluation is still mandatory. Question This is the first study evaluating the impact of AI-based polyp classification in CT colonography on radiologists' therapy management. Findings Compared with unassisted reading, AI-assisted reading had higher accuracy, sensitivity, and specificity in selecting polyps eligible for polypectomy. Clinical relevance Integrating an AI tool for colorectal polyp classification in CT colonography could further improve radiologists' therapy recommendations.

Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model.

Chen Y, Ruan X, Wang X, Li P, Chen Y, Feng B, Wen X, Sun J, Zheng C, Zou Y, Liang B, Li M, Long W, Shen Y

pubmed logopapersJul 1 2025
Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI. During March 2010 and February 2023, 1139 EC patients (age 54.771 ± 8.465 years; range 24-89 years) from five independent centers were enrolled retrospectively. We utilized ResNet18 to extract multi-scale deep learning features from T2-weighted imaging followed by feature selection via Mann-Whitney U test. Subsequently, a Deep Learning Signature (DLS) was formulated using Integrated Sparse Bayesian Extreme Learning Machine. Furthermore, we developed Clinical Model (CM) based on clinical characteristics and MDLR model by integrating clinical characteristics with DLS. The area under the curve (AUC) was used for evaluating diagnostic performance of the models. Decision curve analysis (DCA) and integrated discrimination index (IDI) were used to assess the clinical benefit and compare the predictive performance of models. The MDLR model comprised of age, histopathologic grade, subjective MR findings (TMD and Reading for MI status) and DLS demonstrated the best predictive performance. The AUC values for MDLR in training set, internal validation set, external validation set 1, and external validation set 2 were 0.899 (95% CI, 0.866-0.926), 0.874 (95% CI, 0.829-0.912), 0.862 (95% CI, 0.817-0.899) and 0.867 (95% CI, 0.806-0.914) respectively. The IDI and DCA showed higher diagnostic performance and clinical net benefits for the MDLR than for CM or DLS, which revealed MDLR may enhance decision-making support. The MDLR which incorporated clinical characteristics and DLS could improve preoperative accuracy in discriminating absence or presence of MI. This improvement may facilitate individualized treatment decision-making for EC.

Interstitial-guided automatic clinical tumor volume segmentation network for cervical cancer brachytherapy.

Tan S, He J, Cui M, Gao Y, Sun D, Xie Y, Cai J, Zaki N, Qin W

pubmed logopapersJul 1 2025
Automatic clinical tumor volume (CTV) delineation is pivotal to improving outcomes for interstitial brachytherapy cervical cancer. However, the prominent differences in gray values due to the interstitial needles bring great challenges on deep learning-based segmentation model. In this study, we proposed a novel interstitial-guided segmentation network termed advance reverse guided network (ARGNet) for cervical tumor segmentation with interstitial brachytherapy. Firstly, the location information of interstitial needles was integrated into the deep learning framework via multi-task by a cross-stitch way to share encoder feature learning. Secondly, a spatial reverse attention mechanism is introduced to mitigate the distraction characteristic of needles on tumor segmentation. Furthermore, an uncertainty area module is embedded between the skip connections and the encoder of the tumor segmentation task, which is to enhance the model's capability in discerning ambiguous boundaries between the tumor and the surrounding tissue. Comprehensive experiments were conducted retrospectively on 191 CT scans under multi-course interstitial brachytherapy. The experiment results demonstrated that the characteristics of interstitial needles play a role in enhancing the segmentation, achieving the state-of-the-art performance, which is anticipated to be beneficial in radiotherapy planning.

Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy.

Huang Q, Huang F, Chen C, Xiao P, Liu J, Gao Y

pubmed logopapersJul 1 2025
To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN). In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features. The ML models were constructed based on ultrasomics. The Shapley Additive Explanation (SHAP) was used to explore the interpretability of the models. Logistic regression analysis was employed to combine ultrasomics, clinical data, and ultrasound imaging characteristics, creating a comprehensive model. A receiver operating characteristic curve, calibration, decision curve, and clinical impact curve were used to evaluate prediction performance. To differentiate between mild and moderate-to-severe IF/TA, three prediction models were developed: the Rad_SVM_Model, Clinic_LR_Model, and Rad_Clinic_Model. The area under curves of these three models were 0.861, 0.884, and 0.913 in the training cohort, and 0.760, 0.860, and 0.894 in the internal validation cohort, as well as 0.794, 0.865, and 0.904 in the external validation cohort. SHAP identified the contribution of radiomics features. Difference analysis showed that there were significant differences between radiomics features and fibrosis. The comprehensive model was superior to that of individual indicators and performed well. We developed and validated a model that combined ultrasomics, clinical data, and clinical ultrasonic characteristics based on ML to assess the extent of fibrosis in IgAN. Question Currently, there is a lack of a comprehensive ultrasomics-based machine-learning model for non-invasive assessment of the extent of Immunoglobulin A nephropathy (IgAN) fibrosis. Findings We have developed and validated a robust and interpretable machine-learning model based on ultrasomics for assessing the degree of fibrosis in IgAN. Clinical relevance The machine-learning model developed in this study has significant interpretable clinical relevance. The ultrasomics-based comprehensive model had the potential for non-invasive assessment of fibrosis in IgAN, which helped evaluate disease progress.

Artificial Intelligence in Obstetric and Gynecological MR Imaging.

Saida T, Gu W, Hoshiai S, Ishiguro T, Sakai M, Amano T, Nakahashi Y, Shikama A, Satoh T, Nakajima T

pubmed logopapersJul 1 2025
This review explores the significant progress and applications of artificial intelligence (AI) in obstetrics and gynecological MRI, charting its development from foundational algorithmic techniques to deep learning strategies and advanced radiomics. This review features research published over the last few years that has used AI with MRI to identify specific conditions such as uterine leiomyosarcoma, endometrial cancer, cervical cancer, ovarian tumors, and placenta accreta. In addition, it covers studies on the application of AI for segmentation and quality improvement in obstetrics and gynecology MRI. The review also outlines the existing challenges and envisions future directions for AI research in this domain. The growing accessibility of extensive datasets across various institutions and the application of multiparametric MRI are significantly enhancing the accuracy and adaptability of AI. This progress has the potential to enable more accurate and efficient diagnosis, offering opportunities for personalized medicine in the field of obstetrics and gynecology.
Page 33 of 74733 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.