Sort by:
Page 28 of 55543 results

Explainable deep stacking ensemble model for accurate and transparent brain tumor diagnosis.

Haque R, Khan MA, Rahman H, Khan S, Siddiqui MIH, Limon ZH, Swapno SMMR, Appaji A

pubmed logopapersJun 1 2025
Early detection of brain tumors in MRI images is vital for improving treatment results. However, deep learning models face challenges like limited dataset diversity, class imbalance, and insufficient interpretability. Most studies rely on small, single-source datasets and do not combine different feature extraction techniques for better classification. To address these challenges, we propose a robust and explainable stacking ensemble model for multiclass brain tumor classification. To address these challenges, we propose a stacking ensemble model that combines EfficientNetB0, MobileNetV2, GoogleNet, and Multi-level CapsuleNet, using CatBoost as the meta-learner for improved feature aggregation and classification accuracy. This ensemble approach captures complex tumor characteristics while enhancing robustness and interpretability. The proposed model integrates EfficientNetB0, MobileNetV2, GoogleNet, and a Multi-level CapsuleNet within a stacking framework, utilizing CatBoost as the meta-learner to improve feature aggregation and classification accuracy. We created two large MRI datasets by merging data from four sources: BraTS, Msoud, Br35H, and SARTAJ. To tackle class imbalance, we applied Borderline-SMOTE and data augmentation. We also utilized feature extraction methods, along with PCA and Gray Wolf Optimization (GWO). Our model was validated through confidence interval analysis and statistical tests, demonstrating superior performance. Error analysis revealed misclassification trends, and we assessed computational efficiency regarding inference speed and resource usage. The proposed ensemble achieved 97.81% F1 score and 98.75% PR AUC on M1, and 98.32% F1 score with 99.34% PR AUC on M2. Moreover, the model consistently surpassed state-of-the-art CNNs, Vision Transformers, and other ensemble methods in classifying brain tumors across individual four datasets. Finally, we developed a web-based diagnostic tool that enables clinicians to interact with the proposed model and visualize decision-critical regions in MRI scans using Explainable Artificial Intelligence (XAI). This study connects high-performing AI models with real clinical applications, providing a reliable, scalable, and efficient diagnostic solution for brain tumor classification.

Improving predictability, reliability, and generalizability of brain-wide associations for cognitive abilities via multimodal stacking.

Tetereva A, Knodt AR, Melzer TR, van der Vliet W, Gibson B, Hariri AR, Whitman ET, Li J, Lal Khakpoor F, Deng J, Ireland D, Ramrakha S, Pat N

pubmed logopapersJun 1 2025
Brain-wide association studies (BWASs) have attempted to relate cognitive abilities with brain phenotypes, but have been challenged by issues such as predictability, test-retest reliability, and cross-cohort generalizability. To tackle these challenges, we proposed a machine learning "stacking" approach that draws information from whole-brain MRI across different modalities, from task-functional MRI (fMRI) contrasts and functional connectivity during tasks and rest to structural measures, into one prediction model. We benchmarked the benefits of stacking using the Human Connectome Projects: Young Adults (<i>n</i> = 873, 22-35 years old) and Human Connectome Projects-Aging (<i>n</i> = 504, 35-100 years old) and the Dunedin Multidisciplinary Health and Development Study (Dunedin Study, <i>n</i> = 754, 45 years old). For predictability, stacked models led to out-of-sample <i>r</i>∼0.5-0.6 when predicting cognitive abilities at the time of scanning, primarily driven by task-fMRI contrasts. Notably, using the Dunedin Study, we were able to predict participants' cognitive abilities at ages 7, 9, and 11 years using their multimodal MRI at age 45 years, with an out-of-sample <i>r</i> of 0.52. For test-retest reliability, stacked models reached an excellent level of reliability (interclass correlation > 0.75), even when we stacked only task-fMRI contrasts together. For generalizability, a stacked model with nontask MRI built from one dataset significantly predicted cognitive abilities in other datasets. Altogether, stacking is a viable approach to undertake the three challenges of BWAS for cognitive abilities.

Association of the characteristics of brain magnetic resonance imaging with genes related to disease onset in schizophrenia patients.

Lin J, Wang B, Chen S, Cao F, Zhang J, Lu Z

pubmed logopapersJun 1 2025
Schizophrenia (SCH) is a complex neurodevelopmental disorder, whose pathogenesis is not fully elucidated. This article aims to reveal disease-specific brain structural and functional changes and their potential genetic basis by analyzing the characteristics of brain magnetic resonance imaging (MRI) in SCH patients and related gene expression patterns. Differentially expressed genes (DEGs) between SCH and healthy control (NC) groups in the GSE48072 dataset were identified and functionally analyzed, and a protein-protein interaction (PPI) network was fabricated to screen for core genes (CGs). Meanwhile, MRI data from the COBRE, the Human Connectome Project (HCP), the 1000 Functional Connectomes Project (FCP), and the Consortium for Reliability and Reproducibility (CoRR) were utilized to explore differences in brain activity patterns between SCH patients and NC group using a 3D deep aggregation network (3D DANet) machine learning approach. A correlation analysis was performed between the identified CGs and MRI imaging characteristics. 82 DEGs were collected from the GSE48072 dataset, primarily involved in cytotoxic granules, growth factor binding, and graft-versus-host disease pathways. The construction of the PPI network revealed KLRD1, KLRF1, CD244, GZMH, GZMA, GZMB, PRF1, and SLAMF6 as CGs. SCH patients exhibited relatively enhanced activity patterns in the frontoparietal attention network (FAN) and default mode network (DMN) across four datasets, while showing a trend of weakening in most other networks. The 3D DANet demonstrated higher accuracy, specificity, and sensitivity in brain image classification. The correlation between enhancement of the DMN and genetic abnormalities was the strongest, followed by the enhancement of the frontal and parietal attention networks. In contrast, the correlation between the weakening of the sensory-motor network and occipital network and genetic abnormalities was relatively weak. The strongest correlation was observed between MRI characteristics and the KLRD1 and CD244 genes. The granzyme-mediated programmed cell death signaling pathway is related to pathogenesis of SCH, and CD244 may serve as potential biological markers for diagnosing SCH. The correlation between enhancement of the DMN and genetic abnormalities was the strongest, followed by the enhancement of the frontal and parietal attention networks. In contrast, the correlation between weakening of the sensory-motor network and occipital network and genetic abnormalities was relatively weak. Additionally, the strongest correlation was observed between MRI features and the KLRD1 and CD244 genes. The use of the 3D DANet method has improved the detection precision of brain structural and functional changes in SCH patients, providing a new perspective for understanding the biological basis of the disease.

Alzheimer's disease prediction using 3D-CNNs: Intelligent processing of neuroimaging data.

Rahman AU, Ali S, Saqia B, Halim Z, Al-Khasawneh MA, AlHammadi DA, Khan MZ, Ullah I, Alharbi M

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) is a severe neurological illness that demolishes memory and brain functioning. This disease affects an individual's capacity to work, think, and behave. The proportion of individuals suffering from AD is rapidly increasing. It flatters a leading cause of disability and impacts millions of people worldwide. Early detection reduces disease expansion, provides more effective therapies, and leads to better results. However, predicting AD at an early stage is complex since its clinical symptoms match with normal aging, mild cognitive impairment (MCI), and neurodegenerative disorders. Prior studies indicate that early diagnosis is improved by the utilization of magnetic resonance imaging (MRI). However, MRI data is scarce, noisy, and extremely diverse among scanners and patient populations. The 2D CNNs analyze 3D data slices separately, resulting in a loss of inter-slice information and contextual coherence required to detect subtle and diffuse brain alterations. This study offered a novel 3Dimensional-Convolutional Neural Network (3D-CNN) and intelligent preprocessing pipeline for AD prediction. This work uses an intelligent frame selection and 3D dilated convolutions mechanism to recognize the most informative slices associated with AD disease. This enabled the model to capture subtle and diffuse structural changes across the brain visible in MRI scans. The proposed model examined brain structures by recognizing small volumetric changes associated with AD and acquiring spatial hierarchies within MRI data. After conducting various experiments, we observed that the proposed 3D-CNNs are highly proficient in capturing early brain changes. To validate the model's performance, a benchmark dataset called AD Neuroimaging Initiative (ADNI) is used and achieves a maximum accuracy of 92.89 %, outperforming state-of-the-art approaches.

A Survey of Surrogates and Health Care Professionals Indicates Support of Cognitive Motor Dissociation-Assisted Prognostication.

Heinonen GA, Carmona JC, Grobois L, Kruger LS, Velazquez A, Vrosgou A, Kansara VB, Shen Q, Egawa S, Cespedes L, Yazdi M, Bass D, Saavedra AB, Samano D, Ghoshal S, Roh D, Agarwal S, Park S, Alkhachroum A, Dugdale L, Claassen J

pubmed logopapersJun 1 2025
Prognostication of patients with acute disorders of consciousness is imprecise but more accurate technology-supported predictions, such as cognitive motor dissociation (CMD), are emerging. CMD refers to the detection of willful brain activation following motor commands using functional magnetic resonance imaging or machine learning-supported analysis of the electroencephalogram in clinically unresponsive patients. CMD is associated with long-term recovery, but acceptance by surrogates and health care professionals is uncertain. The objective of this study was to determine receptiveness for CMD to inform goals of care (GoC) decisions and research participation among health care professionals and surrogates of behaviorally unresponsive patients. This was a two-center study of surrogates of and health care professionals caring for unconscious patients with severe neurological injury who were enrolled in two prospective US-based studies. Participants completed a 13-item survey to assess demographics, religiosity, minimal acceptable level of recovery, enthusiasm for research participation, and receptiveness for CMD to support GoC decisions. Completed surveys were obtained from 196 participants (133 health care professionals and 63 surrogates). Across all respondents, 93% indicated that they would want their loved one or the patient they cared for to participate in a research study that supports recovery of consciousness if CMD were detected, compared to 58% if CMD were not detected. Health care professionals were more likely than surrogates to change GoC with a positive (78% vs. 59%, p = 0.005) or negative (83% vs. 59%, p = 0.0002) CMD result. Participants who reported religion was the most important part of their life were least likely to change GoC with or without CMD. Participants who identified as Black (odds ratio [OR] 0.12, 95% confidence interval [CI] 0.04-0.36) or Hispanic/Latino (OR 0.39, 95% CI 0.2-0.75) and those for whom religion was the most important part of their life (OR 0.18, 95% CI 0.05-0.64) were more likely to accept a lower minimum level of recovery. Technology-supported prognostication and enthusiasm for clinical trial participation was supported across a diverse spectrum of health care professionals and surrogate decision-makers. Education for surrogates and health care professionals should accompany integration of technology-supported prognostication.

Extracerebral Normalization of <sup>18</sup>F-FDG PET Imaging Combined with Behavioral CRS-R Scores Predict Recovery from Disorders of Consciousness.

Guo K, Li G, Quan Z, Wang Y, Wang J, Kang F, Wang J

pubmed logopapersJun 1 2025
Identifying patients likely to regain consciousness early on is a challenge. The assessment of consciousness levels and the prediction of wakefulness probabilities are facilitated by <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography (PET). This study aimed to develop a prognostic model for predicting 1-year postinjury outcomes in prolonged disorders of consciousness (DoC) using <sup>18</sup>F-FDG PET alongside clinical behavioral scores. Eighty-seven patients with prolonged DoC newly diagnosed with behavioral Coma Recovery Scale-Revised (CRS-R) scores and <sup>18</sup>F-FDG PET/computed tomography (18F-FDG PET/CT) scans were included. PET images were normalized by the cerebellum and extracerebral tissue, respectively. Images were divided into training and independent test sets at a ratio of 5:1. Image-based classification was conducted using the DenseNet121 network, whereas tabular-based deep learning was employed to train depth features extracted from imaging models and behavioral CRS-R scores. The performance of the models was assessed and compared using the McNemar test. Among the 87 patients with DoC who received routine treatments, 52 patients showed recovery of consciousness, whereas 35 did not. The classification of the standardized uptake value ratio by extracerebral tissue model demonstrated a higher specificity and lower sensitivity in predicting consciousness recovery than the classification of the standardized uptake value ratio by cerebellum model. With area under the curve values of 0.751 ± 0.093 and 0.412 ± 0.104 on the test sets, respectively, the difference is not statistically significant (P = 0.73). The combination of standardized uptake value ratio by extracerebral tissue and computed tomography depth features with behavioral CRS-R scores yielded the highest classification accuracy, with area under the curve values of 0.950 ± 0.027 and 0.933 ± 0.015 on the training and test sets, respectively, outperforming any individual mode. In this preliminary study, a multimodal prognostic model based on <sup>18</sup>F-FDG PET extracerebral normalization and behavioral CRS-R scores facilitated the prediction of recovery in DoC.

A radiomics approach to distinguish Progressive Supranuclear Palsy Richardson's syndrome from other phenotypes starting from MR images.

Pisani N, Abate F, Avallone AR, Barone P, Cesarelli M, Amato F, Picillo M, Ricciardi C

pubmed logopapersJun 1 2025
Progressive Supranuclear Palsy (PSP) is an uncommon neurodegenerative disorder with different clinical onset, including Richardson's syndrome (PSP-RS) and other variant phenotypes (vPSP). Recognising the clinical progression of different phenotypes would enhance the accuracy of detection and treatment of PSP. The study goal was to identify radiomic biomarkers for distinguishing PSP phenotypes extracted from T1-weighted magnetic resonance images (MRI). Forty PSP patients (20 PSP-RS and 20 vPSP) took part in the present work. Radiomic features were collected from 21 regions of interest (ROIs) mainly from frontal cortex, supratentorial white matter, basal nuclei, brainstem, cerebellum, 3rd and 4th ventricles. After features selection, three tree-based machine learning (ML) classifiers were implemented to classify PSP phenotypes. 10 out of 21 ROIs performed best about sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (AUCROC). Particularly, features extracted from the pons region obtained the best accuracy (0.92) and AUCROC (0.83) values while by using the other 10 ROIs, evaluation metrics range from 0.67 to 0.83. Eight features of the Gray Level Dependence Matrix were recurrently extracted for the 10 ROIs. Furthermore, by combining these ROIs, the results exceeded 0.83 in phenotypes classification and the selected areas were brain stem, pons, occipital white matter, precentral gyrus and thalamus regions. Based on the achieved results, our proposed approach could represent a promising tool for distinguishing PSP-RS from vPSP.

Deep learning-driven multi-class classification of brain strokes using computed tomography: A step towards enhanced diagnostic precision.

Kulathilake CD, Udupihille J, Abeysundara SP, Senoo A

pubmed logopapersJun 1 2025
To develop and validate deep learning models leveraging CT imaging for the prediction and classification of brain stroke conditions, with the potential to enhance accuracy and support clinical decision-making. This retrospective, bi-center study included data from 250 patients, with a dataset of 8186 CT images collected from 2017 to 2022. Two AI models were developed using the Expanded ResNet101 deep learning framework as a two-step model. Model performance was evaluated using confusion matrices, supplemented by external validation with an independent dataset. External validation was conducted by an expert and two external members. Overall accuracy, confidence intervals, Cohen's Kappa value, and McNemar's test P-values were calculated. A total of 8186 CT images were incorporated, with 6386 images used for the training and 900 datasets for testing and validation in Model 01. Further, 1619 CT images were used for training and 600 datasets for testing and validation in Model 02. The average accuracy, precision, and F1 score for both models were assessed: Model 01 achieved 99.6 %, 99.4 %, and 99.6 % respectively, whereas Model 02 achieved 99.2 %, 98.8 %, and 99.1 %. The external validation accuracies were 78.6 % (95 % CI: 0.73,0.83; P < 0.001) and 60.2 % (95 % CI: 0.48,0.70; P < 0.001) for Models 01 and 02 respectively, as evaluated by the expert. Deep learning models demonstrated high accuracy, precision, and F1 scores in predicting outcomes for brain stroke patients. With larger cohort and diverse radiologic mimics, these models could support clinicians in prognosis and decision-making.

AO Spine Clinical Practice Recommendations for Diagnosis and Management of Degenerative Cervical Myelopathy: Evidence Based Decision Making - A Review of Cutting Edge Recent Literature Related to Degenerative Cervical Myelopathy.

Fehlings MG, Evaniew N, Ter Wengel PV, Vedantam A, Guha D, Margetis K, Nouri A, Ahmed AI, Neal CJ, Davies BM, Ganau M, Wilson JR, Martin AR, Grassner L, Tetreault L, Rahimi-Movaghar V, Marco R, Harrop J, Guest J, Alvi MA, Pedro KM, Kwon BK, Fisher CG, Kurpad SN

pubmed logopapersJun 1 2025
Study DesignLiterature review of key topics related to degenerative cervical myelopathy (DCM) with critical appraisal and clinical recommendations.ObjectiveThis article summarizes several key current topics related to the management of DCM.MethodsRecent literature related to the management of DCM was reviewed. Four articles were selected and critically appraised. Recommendations were graded as Strong or Conditional.ResultsArticle 1: The Relationship Between pre-operative MRI Signal Intensity and outcomes. <b>Conditional</b> recommendation to use diffusion-weighted imaging MR signal changes in the cervical cord to evaluate prognosis following surgical intervention for DCM. Article 2: Efficacy and Safety of Surgery for Mild DCM. <b>Conditional</b> recommendation that surgery is a valid option for mild DCM with favourable clinical outcomes. Article 3: Effect of Ventral vs Dorsal Spinal Surgery on Patient-Reported Physical Functioning in Patients With Cervical Spondylotic Myelopathy: A Randomized Clinical Trial. <b>Strong</b> recommendation that there is equipoise in the outcomes of anterior vs posterior surgical approaches in cases where either technique could be used. Article 4: Machine learning-based cluster analysis of DCM phenotypes. <b>Conditional</b> recommendation that clinicians consider pain, medical frailty, and the impact on health-related quality of life when counselling patients.ConclusionsDCM requires a multidimensional assessment including neurological dysfunction, pain, impact on health-related quality of life, medical frailty and MR imaging changes in the cord. Surgical treatment is effective and is a valid option for mild DCM. In patients where either anterior or posterior surgical approaches can be used, both techniques afford similar clinical benefit albeit with different complication profiles.

High-Performance Computing-Based Brain Tumor Detection Using Parallel Quantum Dilated Convolutional Neural Network.

Shinde SS, Pande A

pubmed logopapersJun 1 2025
In the healthcare field, brain tumor causes irregular development of cells in the brain. One of the popular ways to identify the brain tumor and its progression is magnetic resonance imaging (MRI). However, existing methods often suffer from high computational complexity, noise interference, and limited accuracy, which affect the early diagnosis of brain tumor. For resolving such issues, a high-performance computing model, such as big data-based detection, is utilized. As a result, this work proposes a novel approach named parallel quantum dilated convolutional neural network (PQDCNN)-based brain tumor detection using the Map-Reducer. The data partitioning is the prime process, which is done using the Fuzzy local information C-means clustering (FLICM). The partitioned data is subjected to the map reducer. In the mapper, the Medav filtering removes the noise, and the tumor area segmentation is done by a transformer model named TransBTSV2. After segmenting the tumor part, image augmentation and feature extraction are done. In the reducer phase, the brain tumor is detected using the proposed PQDCNN. Furthermore, the efficiency of PQDCNN is validated using the accuracy, sensitivity, and specificity metrics, and the ideal values of 91.52%, 91.69%, and 92.26% are achieved.
Page 28 of 55543 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.