Sort by:
Page 235 of 3113104 results

Automated Neural Architecture Search for Cardiac Amyloidosis Classification from [18F]-Florbetaben PET Images.

Bargagna F, Zigrino D, De Santi LA, Genovesi D, Scipioni M, Favilli B, Vergaro G, Emdin M, Giorgetti A, Positano V, Santarelli MF

pubmed logopapersJun 1 2025
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention significantly. This study applies NAS to [18F]-Florbetaben PET cardiac images for classifying cardiac amyloidosis (CA) sub-types (amyloid light chain (AL) and transthyretin amyloid (ATTR)) and controls. Following data preprocessing and augmentation, an evolutionary cell-based NAS approach with a fixed network macro-structure is employed, automatically deriving cells' micro-structure. The algorithm is executed five times, evaluating 100 mutating architectures per run on an augmented dataset of 4048 images (originally 597), totaling 5000 architectures evaluated. The best network (NAS-Net) achieves 76.95% overall accuracy. K-fold analysis yields mean ± SD percentages of sensitivity, specificity, and accuracy on the test dataset: AL subjects (98.7 ± 2.9, 99.3 ± 1.1, 99.7 ± 0.7), ATTR-CA subjects (93.3 ± 7.8, 78.0 ± 2.9, 70.9 ± 3.7), and controls (35.8 ± 14.6, 77.1 ± 2.0, 96.7 ± 4.4). NAS-derived network performance rivals manually determined networks in the literature while using fewer parameters, validating its automatic approach's efficacy.

Deep Learning Approaches for Brain Tumor Detection and Classification Using MRI Images (2020 to 2024): A Systematic Review.

Bouhafra S, El Bahi H

pubmed logopapersJun 1 2025
Brain tumor is a type of disease caused by uncontrolled cell proliferation in the brain leading to serious health issues such as memory loss and motor impairment. Therefore, early diagnosis of brain tumors plays a crucial role to extend the survival of patients. However, given the busy nature of the work of radiologists and aiming to reduce the likelihood of false diagnoses, advancing technologies including computer-aided diagnosis and artificial intelligence have shown an important role in assisting radiologists. In recent years, a number of deep learning-based methods have been applied for brain tumor detection and classification using MRI images and achieved promising results. The main objective of this paper is to present a detailed review of the previous researches in this field. In addition, This work summarizes the existing limitations and significant highlights. The study systematically reviews 60 articles researches published between 2020 and January 2024, extensively covering methods such as transfer learning, autoencoders, transformers, and attention mechanisms. The key findings formulated in this paper provide an analytic comparison and future directions. The review aims to provide a comprehensive understanding of automatic techniques that may be useful for professionals and academic communities working on brain tumor classification and detection.

MR Image Fusion-Based Parotid Gland Tumor Detection.

Sunnetci KM, Kaba E, Celiker FB, Alkan A

pubmed logopapersJun 1 2025
The differentiation of benign and malignant parotid gland tumors is of major significance as it directly affects the treatment process. In addition, it is also a vital task in terms of early and accurate diagnosis of parotid gland tumors and the determination of treatment planning accordingly. As in other diseases, the differentiation of tumor types involves several challenging, time-consuming, and laborious processes. In the study, Magnetic Resonance (MR) images of 114 patients with parotid gland tumors are used for training and testing purposes by Image Fusion (IF). After the Apparent Diffusion Coefficient (ADC), Contrast-enhanced T1-w (T1C-w), and T2-w sequences are cropped, IF (ADC, T1C-w), IF (ADC, T2-w), IF (T1C-w, T2-w), and IF (ADC, T1C-w, T2-w) datasets are obtained for different combinations of these sequences using a two-dimensional Discrete Wavelet Transform (DWT)-based fusion technique. For each of these four datasets, ResNet18, GoogLeNet, and DenseNet-201 architectures are trained separately, and thus, 12 models are obtained in the study. A Graphical User Interface (GUI) application that contains the most successful of these trained architectures for each data is also designed to support the users. The designed GUI application not only allows the fusing of different sequence images but also predicts whether the label of the fused image is benign or malignant. The results show that the DenseNet-201 models for IF (ADC, T1C-w), IF (ADC, T2-w), and IF (ADC, T1C-w, T2-w) are better than the others, with accuracies of 95.45%, 95.96%, and 92.93%, respectively. It is also noted in the study that the most successful model for IF (T1C-w, T2-w) is ResNet18, and its accuracy is equal to 94.95%.

A Large Language Model to Detect Negated Expressions in Radiology Reports.

Su Y, Babore YB, Kahn CE

pubmed logopapersJun 1 2025
Natural language processing (NLP) is crucial to extract information accurately from unstructured text to provide insights for clinical decision-making, quality improvement, and medical research. This study compared the performance of a rule-based NLP system and a medical-domain transformer-based model to detect negated concepts in radiology reports. Using a corpus of 984 de-identified radiology reports from a large U.S.-based academic health system (1000 consecutive reports, excluding 16 duplicates), the investigators compared the rule-based medspaCy system and the Clinical Assertion and Negation Classification Bidirectional Encoder Representations from Transformers (CAN-BERT) system to detect negated expressions of terms from RadLex, the Unified Medical Language System Metathesaurus, and the Radiology Gamuts Ontology. Power analysis determined a sample size of 382 terms to achieve α = 0.05 and β = 0.8 for McNemar's test; based on an estimate of 15% negated terms, 2800 randomly selected terms were annotated manually as negated or not negated. Precision, recall, and F1 of the two models were compared using McNemar's test. Of the 2800 terms, 387 (13.8%) were negated. For negation detection, medspaCy attained a recall of 0.795, precision of 0.356, and F1 of 0.492. CAN-BERT achieved a recall of 0.785, precision of 0.768, and F1 of 0.777. Although recall was not significantly different, CAN-BERT had significantly better precision (χ2 = 304.64; p < 0.001). The transformer-based CAN-BERT model detected negated terms in radiology reports with high precision and recall; its precision significantly exceeded that of the rule-based medspaCy system. Use of this system will improve data extraction from textual reports to support information retrieval, AI model training, and discovery of causal relationships.

Deep Learning Classification of Ischemic Stroke Territory on Diffusion-Weighted MRI: Added Value of Augmenting the Input with Image Transformations.

Koska IO, Selver A, Gelal F, Uluc ME, Çetinoğlu YK, Yurttutan N, Serindere M, Dicle O

pubmed logopapersJun 1 2025
Our primary aim with this study was to build a patient-level classifier for stroke territory in DWI using AI to facilitate fast triage of stroke to a dedicated stroke center. A retrospective collection of DWI images of 271 and 122 consecutive acute ischemic stroke patients from two centers was carried out. Pretrained MobileNetV2 and EfficientNetB0 architectures were used to classify territorial subtypes as middle cerebral artery, posterior circulation, or watershed infarcts along with normal slices. Various input combinations using edge maps, thresholding, and hard attention versions were explored. The effect of augmenting the three-channel inputs of pre-trained models on classification performance was analyzed. ROC analyses and confusion matrix-derived performance metrics of the models were reported. Of the 271 patients included in this study, 151 (55.7%) were male and 120 (44.3%) were female. One hundred twenty-nine patients had MCA (47.6%), 65 patients had posterior circulation (24%), and 77 patients had watershed (28.0%) infarcts for center 1. Of the 122 patients from center 2, 78 (64%) were male and 44 (34%) were female. Fifty-two patients (43%) had MCA, 51 patients had posterior circulation (42%), and 19 (15%) patients had watershed infarcts. The Mobile-Crop model had the best performance with 0.95 accuracy and a 0.91 mean f1 score for slice-wise classification and 0.88 accuracy on external test sets, along with a 0.92 mean AUC. In conclusion, modified pre-trained models may be augmented with the transformation of images to provide a more accurate classification of affected territory by stroke in DWI.

Identification of Bipolar Disorder and Schizophrenia Based on Brain CT and Deep Learning Methods.

Li M, Hou X, Yan W, Wang D, Yu R, Li X, Li F, Chen J, Wei L, Liu J, Wang H, Zeng Q

pubmed logopapersJun 1 2025
With the increasing prevalence of mental illness, accurate clinical diagnosis of mental illness is crucial. Compared with MRI, CT has the advantages of wide application, low price, short scanning time, and high patient cooperation. This study aims to construct a deep learning (DL) model based on CT images to make identification of bipolar disorder (BD) and schizophrenia (SZ). A total of 506 patients (BD = 227, SZ = 279) and 179 healthy controls (HC) was collected from January 2022 to May 2023 at two hospitals, and divided into an internal training set and an internal validation set according to a ratio of 4:1. An additional 65 patients (BD = 35, SZ = 30) and 40 HC were recruited from different hospitals, and served as an external test set. All subjects accepted the conventional brain CT examination. The DenseMD model for identify BD and SZ using multiple instance learning was developed and compared with other classical DL models. The results showed that DenseMD performed excellently with an accuracy of 0.745 in the internal validation set, whereas the accuracy of the ResNet-18, ResNeXt-50, and DenseNet-121model was 0.672, 0.664, and 0.679, respectively. For the external test set, DenseMD again outperformed other models with an accuracy of 0.724; however, the accuracy of the ResNet-18, ResNeXt-50, and DenseNet-121model was 0.657, 0.638, and 0.676, respectively. Therefore, the potential of DL models for identification of BD and SZ based on brain CT images was established, and identification ability of the DenseMD model was better than other classical DL models.

Automatic Segmentation of Ultrasound-Guided Quadratus Lumborum Blocks Based on Artificial Intelligence.

Wang Q, He B, Yu J, Zhang B, Yang J, Liu J, Ma X, Wei S, Li S, Zheng H, Tang Z

pubmed logopapersJun 1 2025
Ultrasound-guided quadratus lumborum block (QLB) technology has become a widely used perioperative analgesia method during abdominal and pelvic surgeries. Due to the anatomical complexity and individual variability of the quadratus lumborum muscle (QLM) on ultrasound images, nerve blocks heavily rely on anesthesiologist experience. Therefore, using artificial intelligence (AI) to identify different tissue regions in ultrasound images is crucial. In our study, we retrospectively collected 112 patients (3162 images) and developed a deep learning model named Q-VUM, which is a U-shaped network based on the Visual Geometry Group 16 (VGG16) network. Q-VUM precisely segments various tissues, including the QLM, the external oblique muscle, the internal oblique muscle, the transversus abdominis muscle (collectively referred to as the EIT), and the bones. Furthermore, we evaluated Q-VUM. Our model demonstrated robust performance, achieving mean intersection over union (mIoU), mean pixel accuracy, dice coefficient, and accuracy values of 0.734, 0.829, 0.841, and 0.944, respectively. The IoU, recall, precision, and dice coefficient achieved for the QLM were 0.711, 0.813, 0.850, and 0.831, respectively. Additionally, the Q-VUM predictions showed that 85% of the pixels in the blocked area fell within the actual blocked area. Finally, our model exhibited stronger segmentation performance than did the common deep learning segmentation networks (0.734 vs. 0.720 and 0.720, respectively). In summary, we proposed a model named Q-VUM that can accurately identify the anatomical structure of the quadratus lumborum in real time. This model aids anesthesiologists in precisely locating the nerve block site, thereby reducing potential complications and enhancing the effectiveness of nerve block procedures.

A Robust Deep Learning Method with Uncertainty Estimation for the Pathological Classification of Renal Cell Carcinoma Based on CT Images.

Yao N, Hu H, Chen K, Huang H, Zhao C, Guo Y, Li B, Nan J, Li Y, Han C, Zhu F, Zhou W, Tian L

pubmed logopapersJun 1 2025
This study developed and validated a deep learning-based diagnostic model with uncertainty estimation to aid radiologists in the preoperative differentiation of pathological subtypes of renal cell carcinoma (RCC) based on computed tomography (CT) images. Data from 668 consecutive patients with pathologically confirmed RCC were retrospectively collected from Center 1, and the model was trained using fivefold cross-validation to classify RCC subtypes into clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). An external validation with 78 patients from Center 2 was conducted to evaluate the performance of the model. In the fivefold cross-validation, the area under the receiver operating characteristic curve (AUC) for the classification of ccRCC, pRCC, and chRCC was 0.868 (95% CI, 0.826-0.923), 0.846 (95% CI, 0.812-0.886), and 0.839 (95% CI, 0.802-0.88), respectively. In the external validation set, the AUCs were 0.856 (95% CI, 0.838-0.882), 0.787 (95% CI, 0.757-0.818), and 0.793 (95% CI, 0.758-0.831) for ccRCC, pRCC, and chRCC, respectively. The model demonstrated robust performance in predicting the pathological subtypes of RCC, while the incorporated uncertainty emphasized the importance of understanding model confidence. The proposed approach, integrated with uncertainty estimation, offers clinicians a dual advantage: accurate RCC subtype predictions complemented by diagnostic confidence metrics, thereby promoting informed decision-making for patients with RCC.

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI.

Huang Y, Leotta NJ, Hirsch L, Gullo RL, Hughes M, Reiner J, Saphier NB, Myers KS, Panigrahi B, Ambinder E, Di Carlo P, Grimm LJ, Lowell D, Yoon S, Ghate SV, Parra LC, Sutton EJ

pubmed logopapersJun 1 2025
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.

Uncertainty Estimation for Dual View X-ray Mammographic Image Registration Using Deep Ensembles.

Walton WC, Kim SJ

pubmed logopapersJun 1 2025
Techniques are developed for generating uncertainty estimates for convolutional neural network (CNN)-based methods for registering the locations of lesions between the craniocaudal (CC) and mediolateral oblique (MLO) mammographic X-ray image views. Multi-view lesion correspondence is an important task that clinicians perform for characterizing lesions during routine mammographic exams. Automated registration tools can aid in this task, yet if the tools also provide confidence estimates, they can be of greater value to clinicians, especially in cases involving dense tissue where lesions may be difficult to see. A set of deep ensemble-based techniques, which leverage a negative log-likelihood (NLL)-based cost function, are implemented for estimating uncertainties. The ensemble architectures involve significant modifications to an existing CNN dual-view lesion registration algorithm. Three architectural designs are evaluated, and different ensemble sizes are compared using various performance metrics. The techniques are tested on synthetic X-ray data, real 2D X-ray data, and slices from real 3D X-ray data. The ensembles generate covariance-based uncertainty ellipses that are correlated with registration accuracy, such that the ellipse sizes can give a clinician an indication of confidence in the mapping between the CC and MLO views. The results also show that the ellipse sizes can aid in improving computer-aided detection (CAD) results by matching CC/MLO lesion detects and reducing false alarms from both views, adding to clinical utility. The uncertainty estimation techniques show promise as a means for aiding clinicians in confidently establishing multi-view lesion correspondence, thereby improving diagnostic capability.
Page 235 of 3113104 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.