Sort by:
Page 22 of 99990 results

Validation of automated computed tomography segmentation software to assess body composition among cancer patients.

Salehin M, Yang Chow VT, Lee H, Weltzien EK, Nguyen L, Li JM, Akella V, Caan BJ, Cespedes Feliciano EM, Ma D, Beg MF, Popuri K

pubmed logopapersAug 25 2025
Assessing body composition using computed tomography (CT) can help predict the clinical outcomes of cancer patients, including surgical complications, chemotherapy toxicity, and survival. However, manual segmentation of CT images is labor-intensive and can lead to significant inter-observer variability. In this study, we validate the accuracy and reliability of automatic CT-based segmentation using the Data Analysis Facilitation Suite (DAFS) Express software package, which rapidly segments single CT slices. The study analyzed single-slice images at the third lumbar vertebra (L3) level (n = 5973) of patients diagnosed with non-metastatic colorectal (n = 3098) and breast cancer (n = 2875) at Kaiser Permanente Northern California. Manual segmentation used SliceOmatic with Alberta protocol HU ranges; automated segmentation used DAFS Express with identical HU limits. The accuracy of the automated segmentation was evaluated using the DICE index, the reliability was assessed by intra-class correlation coefficients (ICC) with 95% CI, and the agreement between automatic and manual segmentations was assessed by Bland-Altman analysis. DICE scores below 20% and 70% were considered failed and poor segmentations, respectively, and underwent additional review. The mortality risk associated with each tissue's area was generated using Cox proportional hazard ratios (HR) with 95% CI, adjusted for patient-specific variables including age, sex, race/ethnicity, cancer stage and grade, treatment receipt, and smoking status. A blinded review process categorized images with various characteristics for sensitivity analysis. The mean (standard deviation, SD) ages of the colorectal and breast cancer patients were 62.6 (11.4) and 56 (11.8), respectively. Automatic segmentation showed high accuracy vs. manual segmentation, with mean DICE scores above 96% for skeletal muscle (SKM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), and above 77% for intermuscular adipose tissue (IMAT), with three failures, representing 0.05% of the cohort. Bland-Altman analysis of 5,973 measurements showed mean cross-sectional area differences of -5.73, -0.84, -2.82, and -1.02 cm<sup>2</sup> for SKM, VAT, SAT and IMAT, respectively, indicating good agreement, with slight underestimation in SKM and SAT. Reliability Coefficients ranged from 0.88-1.00 for colorectal and 0.95-1.00 for breast cancer, with Simple Kappa values of 0.65-0.99 and 0.67-0.97, respectively. Additionally, mortality associations for automated and manual segmentations were similar, with comparable hazard ratios, confidence intervals, and p-values. Kaplan-Meier survival estimates showed mortality differences below 2.14%. DAFS Express enables rapid, accurate body composition analysis by automating segmentation, reducing expert time and computational burden. This rapid analysis of body composition is a prerequisite to large-scale research that could potentially enable use in the clinical setting. Automated CT segmentations may be utilized to assess markers of sarcopenia, muscle loss, and adiposity and predict clinical outcomes.

Complex-Valued Spatio-Temporal Graph Convolution Neural Network optimized With Giraffe Kicking Optimization Algorithm for Thyroid Nodule Classification in Ultrasound Images.

Kumar K K, P R, M N, G D

pubmed logopapersAug 25 2025
Thyroid hormones are significant for controlling metabolism, and two common thyroid disorders, such as hypothyroidism. The hyperthyroidism are directly affect the metabolic rate of the human body. Predicting and diagnosing thyroid disease remain significant challenges in medical research due to the complexity of thyroid hormone regulation and its impact on metabolism. Therefore, this paper proposes a Complex-valued Spatio-Temporal Graph Convolution Neural Network optimized with Giraffe Kicking Optimization Algorithm for Thyroid Nodule Classification in Ultrasound Images (CSGCNN-GKOA-TNC-UI). Here, the ultrasound images are collected through DDTI (Digital Database of Thyroid ultrasound Imageries) dataset. The gathered data is given into the pre-processing stage using Bilinear Double-Order Filter (BDOF) approach to eradicate the noise and increase the input images quality. The pre-processing image is given into the Deep Adaptive Fuzzy Clustering (DAFC) for Region of Interest (RoI) segmentation. The segmented image is fed to the Multi-Objective Matched Synchro Squeezing Chirplet Transform (MMSSCT) for extracting the features, like Geometric features and Morphological features. The extracted features are fed into the CSGCNN, which classifies the Thyroid Nodule into Benign Nodules and Malign Nodules. Finally, Giraffe Kicking Optimization Algorithm (GKOA) is considered to enhance the CSGCNN classifier. The CSGCNN-GKOA-TNC-UI algorithm is implemented in MATLAB. The CSGCNN-GKOA-TNC-UI approach attains 34.9%, 21.5% and 26.8% higher f-score, 18.6%, 29.3 and 19.2% higher accuracy when compared with existing models: Thyroid diagnosis with classification utilizing DNN depending on hybrid meta-heuristic with LSTM method (LSTM-TNC-UI), innovative full-scale connected network for segmenting thyroid nodule in UI (FCG Net-TNC-UI), and Adversarial architecture dependent multi-scale fusion method for segmenting thyroid nodule (AMSeg-TNC-UI) methods respectively. The proposed model enhances thyroid nodule classification accuracy, aiding radiologists and endocrinologists. By reducing misclassification, it minimizes unnecessary biopsies and enables early malignancy detection.

Bosniak classification of renal cysts using large language models: a comparative study.

Hacibey I, Kaba E

pubmed logopapersAug 24 2025
The Bosniak classification system is widely used to assess malignancy risk in renal cystic lesions, yet inter-observer variability poses significant challenges. Large language models (LLMs) may offer a standardized approach to classification when provided with textual descriptions, such as those found in radiology reports. This study evaluated the performance of five LLMs-GPT‑4 (ChatGPT), Gemini, Copilot, Perplexity, and NotebookLM-in classifying renal cysts based on synthetic textual descriptions mimicking CT report content. A synthetic dataset of 100 diagnostic scenarios (20 cases per Bosniak category) was constructed using established radiological criteria. Each LLM was evaluated using zero-shot and few-shot prompting strategies, while NotebookLM employed retrieval-augmented generation (RAG). Performance metrics included accuracy, sensitivity, and specificity. Statistical significance was assessed using McNemar's and chi-squared tests. GPT‑4 achieved the highest accuracy (87% zero-shot, 99% few-shot), followed by Copilot (81-86%), Gemini (55-69%), and Perplexity (43-69%). NotebookLM, tested only under RAG conditions, reached 87% accuracy. Few-shot learning significantly improved performance (p < 0.05). Classification of Bosniak IIF lesions remained challenging across models. When provided with well-structured textual descriptions, LLMs can accurately classify renal cysts. Few-shot prompting significantly enhances performance. However, persistent difficulties in classifying borderline lesions such as Bosniak IIF highlight the need for further refinement and real-world validation.

Deep Learning-Assisted Detection of Sarcopenia in Cross-Sectional Computed Tomography Imaging

Manish Bhardwaj, Huizhi Liang, Ashwin Sivaharan, Sandip Nandhra, Vaclav Snasel, Tamer El-Sayed, Varun Ojha

arxiv logopreprintAug 24 2025
Sarcopenia is a progressive loss of muscle mass and function linked to poor surgical outcomes such as prolonged hospital stays, impaired mobility, and increased mortality. Although it can be assessed through cross-sectional imaging by measuring skeletal muscle area (SMA), the process is time-consuming and adds to clinical workloads, limiting timely detection and management; however, this process could become more efficient and scalable with the assistance of artificial intelligence applications. This paper presents high-quality three-dimensional cross-sectional computed tomography (CT) images of patients with sarcopenia collected at the Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust. Expert clinicians manually annotated the SMA at the third lumbar vertebra, generating precise segmentation masks. We develop deep-learning models to measure SMA in CT images and automate this task. Our methodology employed transfer learning and self-supervised learning approaches using labelled and unlabeled CT scan datasets. While we developed qualitative assessment models for detecting sarcopenia, we observed that the quantitative assessment of SMA is more precise and informative. This approach also mitigates the issue of class imbalance and limited data availability. Our model predicted the SMA, on average, with an error of +-3 percentage points against the manually measured SMA. The average dice similarity coefficient of the predicted masks was 93%. Our results, therefore, show a pathway to full automation of sarcopenia assessment and detection.

MIE: Magnification-integrated ensemble method for improving glomeruli segmentation in medical imaging.

Han Y, Kim J, Park S, Moon JS, Lee JH

pubmed logopapersAug 24 2025
Glomeruli are crucial for blood filtration, waste removal, and regulation of essential substances in the body. Traditional methods for detecting glomeruli rely on human interpretation, which can lead to variability. AI techniques have improved this process; however, most studies have used images with fixed magnification. This study proposes a novel magnification-integrated ensemble method to enhance glomerular segmentation accuracy. Whole-slide images (WSIs) from 12 patients were used for training, two for validation, and one for testing. Patch and mask images were extracted at 256 × 256 size × x2, x3, and x4 magnification levels. Data augmentation techniques, such as RandomResize, RandomCrop, and RandomFlip, were used. The segmentation model underwent 80,000 iterations with a stochastic gradient descent (SGD). Performance varied with changes in magnification. The models trained on high-magnification images showed significant drops when tested at lower magnifications, and vice versa. The proposed method improved segmentation accuracy across different magnifications, achieving 87.72 mIoU and 93.04 Dice score with the U-Net model. The magnification-integrated ensemble method significantly enhanced glomeruli segmentation accuracy across varying magnifications, thereby addressing the limitations of fixed magnification models. This approach improves the robustness and reliability of AI-driven diagnostic tools, potentially benefiting various medical imaging applications by ensuring consistent performance despite changes in image magnification.

An Efficient Dual-Line Decoder Network with Multi-Scale Convolutional Attention for Multi-organ Segmentation

Riad Hassan, M. Rubaiyat Hossain Mondal, Sheikh Iqbal Ahamed, Fahad Mostafa, Md Mostafijur Rahman

arxiv logopreprintAug 23 2025
Proper segmentation of organs-at-risk is important for radiation therapy, surgical planning, and diagnostic decision-making in medical image analysis. While deep learning-based segmentation architectures have made significant progress, they often fail to balance segmentation accuracy with computational efficiency. Most of the current state-of-the-art methods either prioritize performance at the cost of high computational complexity or compromise accuracy for efficiency. This paper addresses this gap by introducing an efficient dual-line decoder segmentation network (EDLDNet). The proposed method features a noisy decoder, which learns to incorporate structured perturbation at training time for better model robustness, yet at inference time only the noise-free decoder is executed, leading to lower computational cost. Multi-Scale convolutional Attention Modules (MSCAMs), Attention Gates (AGs), and Up-Convolution Blocks (UCBs) are further utilized to optimize feature representation and boost segmentation performance. By leveraging multi-scale segmentation masks from both decoders, we also utilize a mutation-based loss function to enhance the model's generalization. Our approach outperforms SOTA segmentation architectures on four publicly available medical imaging datasets. EDLDNet achieves SOTA performance with an 84.00% Dice score on the Synapse dataset, surpassing baseline model like UNet by 13.89% in Dice score while significantly reducing Multiply-Accumulate Operations (MACs) by 89.7%. Compared to recent approaches like EMCAD, our EDLDNet not only achieves higher Dice score but also maintains comparable computational efficiency. The outstanding performance across diverse datasets establishes EDLDNet's strong generalization, computational efficiency, and robustness. The source code, pre-processed data, and pre-trained weights will be available at https://github.com/riadhassan/EDLDNet .

A novel MRI-based habitat analysis and deep learning for predicting perineural invasion in prostate cancer: a two-center study.

Deng S, Huang D, Han X, Zhang H, Wang H, Mao G, Ao W

pubmed logopapersAug 23 2025
To explore the efficacy of a deep learning (DL) model in predicting perineural invasion (PNI) in prostate cancer (PCa) by conducting multiparametric MRI (mpMRI)-based tumor heterogeneity analysis. This retrospective study included 397 patients with PCa from two medical centers. The patients were divided into training, internal validation (in-vad), and independent external validation (ex-vad) cohorts (n = 173, 74, and 150, respectively). mpMRI-based habitat analysis, comprising T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient sequences, was performed followed by DL, deep feature selection, and filtration to compute a radscore. Subsequently, six models were constructed: one clinical model, four habitat models (habitats 1, 2, 3, and whole-tumor), and one combined model. Receiver operating characteristic curve analysis was performed to evaluate the models' ability to predict PNI. The four habitat models exhibited robust performance in predicting PNI, with area under the curve (AUC) values of 0.862-0.935, 0.802-0.957, and 0.859-0.939 in the training, in-vad, and ex-vad cohorts, respectively. The clinical model had AUC values of 0.832, 0.818, and 0.789 in the training, in-vad, and ex-vad cohorts, respectively. The combined model outperformed the clinical and habitat models, with AUC, sensitivity, and specificity values of 0.999, 1, and 0.955 for the training cohort. Decision curve analysis and clinical impact curve analysis indicated favorable clinical applicability and utility of the combined model. DL models constructed through mpMRI-based habitat analysis accurately predict the PNI status of PCa.

Spectral computed tomography thermometry for thermal ablation: applicability and needle artifact reduction.

Koetzier LR, Hendriks P, Heemskerk JWT, van der Werf NR, Selles M, van der Molen AJ, Smits MLJ, Goorden MC, Burgmans MC

pubmed logopapersAug 23 2025
Effective thermal ablation of liver tumors requires precise monitoring of the ablation zone. Computed tomography (CT) thermometry can non-invasively monitor lethal temperatures but suffers from metal artifacts caused by ablation equipment. This study assesses spectral CT thermometry's applicability during microwave ablation, comparing the reproducibility, precision, and accuracy of attenuation-based versus physical density-based thermometry. Furthermore, it identifies optimal metal artifact reduction (MAR) methods: O-MAR, deep learning-MAR, spectral CT, and combinations thereof. Four gel phantoms embedded with temperature sensors underwent a 10- minute, 60 W microwave ablation imaged by dual-layer spectral CT scanner in 23 scans over time. For each scan attenuation-based and physical density-based temperature maps were reconstructed. Attenuation-based and physical density-based thermometry models were tested for reproducibility over three repetitions; a fourth repetition focused on accuracy. MAR techniques were applied to one repetition to evaluate temperature precision in artifact-corrupted slices. The correlation between CT value and temperature was highly linear with an R-squared value exceeding 96 %. Model parameters for attenuation-based and physical density-based thermometry were -0.38 HU/°C and 0.00039 °C<sup>-1</sup>, with coefficients of variation of 2.3 % and 6.7 %, respectively. Physical density maps improved temperature precision in presence of needle artifacts by 73 % compared to attenuation images. O-MAR improved temperature precision with 49 % compared to no MAR. Attenuation-based thermometry yielded narrower Bland-Altman limits-of-agreement (-7.7 °C to 5.3 °C) than physical density-based thermometry. Spectral physical density-based CT thermometry at 150 keV, utilized alongside O-MAR, enhances temperature precision in presence of metal artifacts and achieves reproducible temperature measurements with high accuracy.

A Disease-Centric Vision-Language Foundation Model for Precision Oncology in Kidney Cancer

Yuhui Tao, Zhongwei Zhao, Zilong Wang, Xufang Luo, Feng Chen, Kang Wang, Chuanfu Wu, Xue Zhang, Shaoting Zhang, Jiaxi Yao, Xingwei Jin, Xinyang Jiang, Yifan Yang, Dongsheng Li, Lili Qiu, Zhiqiang Shao, Jianming Guo, Nengwang Yu, Shuo Wang, Ying Xiong

arxiv logopreprintAug 22 2025
The non-invasive assessment of increasingly incidentally discovered renal masses is a critical challenge in urologic oncology, where diagnostic uncertainty frequently leads to the overtreatment of benign or indolent tumors. In this study, we developed and validated RenalCLIP using a dataset of 27,866 CT scans from 8,809 patients across nine Chinese medical centers and the public TCIA cohort, a visual-language foundation model for characterization, diagnosis and prognosis of renal mass. The model was developed via a two-stage pre-training strategy that first enhances the image and text encoders with domain-specific knowledge before aligning them through a contrastive learning objective, to create robust representations for superior generalization and diagnostic precision. RenalCLIP achieved better performance and superior generalizability across 10 core tasks spanning the full clinical workflow of kidney cancer, including anatomical assessment, diagnostic classification, and survival prediction, compared with other state-of-the-art general-purpose CT foundation models. Especially, for complicated task like recurrence-free survival prediction in the TCIA cohort, RenalCLIP achieved a C-index of 0.726, representing a substantial improvement of approximately 20% over the leading baselines. Furthermore, RenalCLIP's pre-training imparted remarkable data efficiency; in the diagnostic classification task, it only needs 20% training data to achieve the peak performance of all baseline models even after they were fully fine-tuned on 100% of the data. Additionally, it achieved superior performance in report generation, image-text retrieval and zero-shot diagnosis tasks. Our findings establish that RenalCLIP provides a robust tool with the potential to enhance diagnostic accuracy, refine prognostic stratification, and personalize the management of patients with kidney cancer.

Development and Validation of an Interpretable Machine Learning Model for Predicting Adverse Clinical Outcomes in Placenta Accreta Spectrum: A Multicenter Study.

Li H, Zhang Y, Mei H, Yuan Y, Wang L, Liu W, Zeng H, Huang J, Chai X, Wu K, Liu H

pubmed logopapersAug 22 2025
Placenta accreta spectrum (PAS) is a serious perinatal complication. Accurate preoperative identification of patients at high risk for adverse clinical outcomes is essential for developing personalized treatment strategies. This study aimed to develop and validate a high-performance, interpretable machine learning model that integrates MRI morphological indicators and clinical features to predict adverse outcomes in PAS, and to build an online prediction tool to enhance its clinical applicability. This retrospective study included 125 clinically confirmed PAS patients from two centers, categorized into high-risk (intraoperative blood loss over 1500 mL or requiring hysterectomy) and low-risk groups. Data from Center 1 were used for model development, and data from Center 2 served as the external validation set. Five MRI morphological indicators and six clinical features were extracted as model inputs. Three machine learning classifiers-AdaBoost, TabPFN, and CatBoost-were trained and evaluated on both internal testing and external validation cohorts. SHAP analysis was used to interpret model decision-making, and the optimal model was deployed via a Streamlit-based web platform. The CatBoost model achieved the best performance, with AUROCs of 0.90 (95% CI: 0.73-0.99) and 0.84 (95% CI: 0.70-0.97) in the internal testing and external validation sets, respectively. Calibration curves indicated strong agreement between predicted and actual risks. SHAP analysis revealed that "Cervical canal length" and "Gestational age" contributed negatively to high-risk predictions, while "Prior C-sections number", "Placental abnormal vasculature area", and Parturition were positively associated. The final online tool allows real-time risk prediction and visualization of individualized force plots and is freely accessible to clinicians and patients. This study successfully developed an interpretable and practical machine learning model for predicting adverse clinical outcomes in PAS. The accompanying online tool may support clinical decision-making and improve individualized management for PAS patients.
Page 22 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.