Sort by:
Page 20 of 47469 results

Evaluation of Semi-Automated versus Fully Automated Technologies for Computed Tomography Scalable Body Composition Analyses in Patients with Severe Acute Respiratory Syndrome Coronavirus-2.

Wozniak A, O'Connor P, Seigal J, Vasilopoulos V, Beg MF, Popuri K, Joyce C, Sheean P

pubmed logopapersJun 11 2025
Fully automated, artificial intelligence (AI) -based software has recently become available for scalable body composition analysis. Prior to broad application in the clinical arena, validation studies are needed. Our goal was to compare the results of a fully automated, AI-based software with a semi-automatic software in a sample of hospitalized patients. A diverse group of patients with Coronovirus-2 (COVID-19) and evaluable computed tomography (CT) images were included in this retrospective cohort. Our goal was to compare multiple aspects of body composition procuring results from fully automated and semi-automated body composition software. Bland-Altman analyses and correlation coefficients were used to calculate average bias and trend of bias for skeletal muscle (SM), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), and total adipose tissue (TAT-the sum of SAT, VAT, and IMAT). A total of 141 patients (average (standard deviation (SD)) age of 58.2 (18.9), 61% male, and 31% White Non-Hispanic, 31% Black Non-Hispanic, and 33% Hispanic) contributed to the analysis. Average bias (mean ± SD) was small (in comparison to the SD) and negative for SM (-3.79 cm<sup>2</sup> ± 7.56 cm<sup>2</sup>) and SAT (-7.06 cm<sup>2</sup> ± 19.77 cm<sup>2</sup>), and small and positive for VAT (2.29 cm<sup>2</sup> ± 15.54 cm<sup>2</sup>). A large negative bias was observed for IMAT (-7.77 cm<sup>2</sup> ± 5.09 cm<sup>2</sup>), where fully automated software underestimated intramuscular tissue quantity relative to the semi-automated software. The discrepancy in IMAT calculation was not uniform across its range given a correlation coefficient of -0.625; as average IMAT increased, the bias (underestimation by fully automated software) was greater. When compared to a semi-automated software, a fully automated, AI-based software provides consistent findings for key CT body composition measures (SM, SAT, VAT, TAT). While our findings support good overall agreement as evidenced by small biases and limited outliers, additional studies are needed in other clinical populations to further support validity and advanced precision, especially in the context of body composition and malnutrition assessment.

RCMIX model based on pre-treatment MRI imaging predicts T-downstage in MRI-cT4 stage rectal cancer.

Bai F, Liao L, Tang Y, Wu Y, Wang Z, Zhao H, Huang J, Wang X, Ding P, Wu X, Cai Z

pubmed logopapersJun 11 2025
Neoadjuvant therapy (NAT) is the standard treatment strategy for MRI-defined cT4 rectal cancer. Predicting tumor regression can guide the resection plane to some extent. Here, we covered pre-treatment MRI imaging of 363 cT4 rectal cancer patients receiving NAT and radical surgery from three hospitals: Center 1 (n = 205), Center 2 (n = 109) and Center 3 (n = 52). We propose a machine learning model named RCMIX, which incorporates a multilayer perceptron algorithm based on 19 pre-treatment MRI radiomic features and 2 clinical features in cT4 rectal cancer patients receiving NAT. The model was trained on 205 cases of cT4 rectal cancer patients, achieving an AUC of 0.903 (95% confidence interval, 0.861-0.944) in predicting T-downstage. It also achieved AUC of 0.787 (0.699-0.874) and 0.773 (0.646-0.901) in two independent test cohorts, respectively. cT4 rectal cancer patients who were predicted as Well T-downstage by the RCMIX model had significantly better disease-free survival than those predicted as Poor T-downstage. Our study suggests that the RCMIX model demonstrates satisfactory performance in predicting T-downstage by NAT for cT4 rectal cancer patients, which may provide critical insights to improve surgical strategies.

Towards more reliable prostate cancer detection: Incorporating clinical data and uncertainty in MRI deep learning.

Taguelmimt K, Andrade-Miranda G, Harb H, Thanh TT, Dang HP, Malavaud B, Bert J

pubmed logopapersJun 11 2025
Prostate cancer (PCa) is one of the most common cancers among men, and artificial intelligence (AI) is emerging as a promising tool to enhance its diagnosis. This work proposes a classification approach for PCa cases using deep learning techniques. We conducted a comparison between unimodal models based either on biparametric magnetic resonance imaging (bpMRI) or clinical data (such as prostate-specific antigen levels, prostate volume, and age). We also introduced a bimodal model that simultaneously integrates imaging and clinical data to address the limitations of unimodal approaches. Furthermore, we propose a framework that not only detects the presence of PCa but also evaluates the uncertainty associated with the predictions. This approach makes it possible to identify highly confident predictions and distinguish them from those characterized by uncertainty, thereby enhancing the reliability and applicability of automated medical decisions in clinical practice. The results show that the bimodal model significantly improves performance, with an area under the curve (AUC) reaching 0.82±0.03, a sensitivity of 0.73±0.04, while maintaining high specificity. Uncertainty analysis revealed that the bimodal model produces more confident predictions, with an uncertainty accuracy of 0.85, surpassing the imaging-only model (which is 0.71). This increase in reliability is crucial in a clinical context, where precise and dependable diagnostic decisions are essential for patient care. The integration of clinical data with imaging data in a bimodal model not only improves diagnostic performance but also strengthens the reliability of predictions, making this approach particularly suitable for clinical use.

Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation

Emerson P. Grabke, Masoom A. Haider, Babak Taati

arxiv logopreprintJun 11 2025
Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM training typically relies on performance- or scientific accessibility-limiting strategies including a reliance on short-prompt text encoders, the reuse of non-medical LDMs, or a requirement for fine-tuning with large data volumes. We propose a Class-Conditioned Efficient Large Language model Adapter (CCELLA) to address these limitations. CCELLA is a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with non-medical large language model-encoded text features through cross-attention and with pathology classification through the timestep embedding. We also propose a joint loss function and a data-efficient LDM training framework. In combination, these strategies enable pathology-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Our method achieves a 3D FID score of 0.025 on a size-limited prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method to the training dataset improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone.

Non-invasive prediction of nuclear grade in renal cell carcinoma using CT-Based radiomics: a systematic review and meta-analysis.

Salimi M, Hajikarimloo B, Vadipour P, Abdolizadeh A, Fayedeh F, Seifi S

pubmed logopapersJun 11 2025
Renal cell carcinoma (RCC) represents the most prevalent malignant neoplasm of the kidney, with a rising global incidence. Tumor nuclear grade is a crucial prognostic factor, guiding treatment decisions, but current histopathological grading via biopsy is invasive and prone to sampling errors. This study aims to assess the diagnostic performance and quality of CT-based radiomics for preoperatively predicting RCC nuclear grade. A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science to identify relevant studies up until 19 April 2025. Quality was assessed using the QUADAS-2 and METRICS tools. A bivariate random-effects meta-analysis was performed to evaluate model performance, including sensitivity, specificity, and Area Under the Curve (AUC). Results from separate validation cohorts were pooled, and clinical and combined models were analyzed separately in distinct analyses. A total of 26 studies comprising 1993 individuals in 10 external and 16 internal validation cohorts were included. Meta-analysis of radiomics models showed pooled AUC of 0.88, sensitivity of 0.78, and specificity of 0.82. Clinical and combined (clinical-radiomics) models showed AUCs of 0.73 and 0.86, respectively. QUADAS-2 revealed significant risk of bias in the Index Test and Flow and Timing domains. METRICS scores ranged from 49.7 to 88.4%, with an average of 66.65%, indicating overall good quality, though gaps in some aspects of study methodologies were identified. This study suggests that radiomics models show great potential and diagnostic accuracy for non-invasive preoperative nuclear grading of RCC. However, challenges related to generalizability and clinical applicability remain, as further research with standardized methodologies, external validation, and larger cohorts is needed to enhance their reliability and integration into routine clinical practice.

Efficacy of a large language model in classifying branch-duct intraductal papillary mucinous neoplasms.

Sato M, Yasaka K, Abe S, Kurashima J, Asari Y, Kiryu S, Abe O

pubmed logopapersJun 11 2025
Appropriate categorization based on magnetic resonance imaging (MRI) findings is important for managing intraductal papillary mucinous neoplasms (IPMNs). In this study, a large language model (LLM) that classifies IPMNs based on MRI findings was developed, and its performance was compared with that of less experienced human readers. The medical image management and processing systems of our hospital were searched to identify MRI reports of branch-duct IPMNs (BD-IPMNs). They were assigned to the training, validation, and testing datasets in chronological order. The model was trained on the training dataset, and the best-performing model on the validation dataset was evaluated on the test dataset. Furthermore, two radiology residents (Readers 1 and 2) and an intern (Reader 3) manually sorted the reports in the test dataset. The accuracy, sensitivity, and time required for categorizing were compared between the model and readers. The accuracy of the fine-tuned LLM for the test dataset was 0.966, which was comparable to that of Readers 1 and 2 (0.931-0.972) and significantly better than that of Reader 3 (0.907). The fine-tuned LLM had an area under the receiver operating characteristic curve of 0.982 for the classification of cyst diameter ≥ 10 mm, which was significantly superior to that of Reader 3 (0.944). Furthermore, the fine-tuned LLM (25 s) completed the test dataset faster than the readers (1,887-2,646 s). The fine-tuned LLM classified BD-IPMNs based on MRI findings with comparable performance to that of radiology residents and significantly reduced the time required.

Artificial intelligence and endoanal ultrasound: pioneering automated differentiation of benign anal and sphincter lesions.

Mascarenhas M, Almeida MJ, Martins M, Mendes F, Mota J, Cardoso P, Mendes B, Ferreira J, Macedo G, Poças C

pubmed logopapersJun 10 2025
Anal injuries, such as lacerations and fissures, are challenging to diagnose because of their anatomical complexity. Endoanal ultrasound (EAUS) has proven to be a reliable tool for detailed visualization of anal structures but relies on expert interpretation. Artificial intelligence (AI) may offer a solution for more accurate and consistent diagnoses. This study aims to develop and test a convolutional neural network (CNN)-based algorithm for automatic classification of fissures and anal lacerations (internal and external) on EUAS. A single-center retrospective study analyzed 238 EUAS radial probe exams (April 2022-January 2024), categorizing 4528 frames into fissures (516), external lacerations (2174), and internal lacerations (1838), following validation by three experts. Data was split 80% for training and 20% for testing. Performance metrics included sensitivity, specificity, and accuracy. For external lacerations, the CNN achieved 82.5% sensitivity, 93.5% specificity, and 88.2% accuracy. For internal lacerations, achieved 91.7% sensitivity, 85.9% specificity, and 88.2% accuracy. For anal fissures, achieved 100% sensitivity, specificity, and accuracy. This first EUAS AI-assisted model for differentiating benign anal injuries demonstrates excellent diagnostic performance. It highlights AI's potential to improve accuracy, reduce reliance on expertise, and support broader clinical adoption. While currently limited by small dataset and single-center scope, this work represents a significant step towards integrating AI in proctology.

DWI-based Biologically Interpretable Radiomic Nomogram for Predicting 1- year Biochemical Recurrence after Radical Prostatectomy: A Deep Learning, Multicenter Study.

Niu X, Li Y, Wang L, Xu G

pubmed logopapersJun 10 2025
It is not rare to experience a biochemical recurrence (BCR) following radical prostatectomy (RP) for prostate cancer (PCa). It has been reported that early detection and management of BCR following surgery could improve survival in PCa. This study aimed to develop a nomogram integrating deep learning-based radiomic features and clinical parameters to predict 1-year BCR after RP and to examine the associations between radiomic scores and the tumor microenvironment (TME). In this retrospective multicenter study, two independent cohorts of patients (n = 349) who underwent RP after multiparametric magnetic resonance imaging (mpMRI) between January 2015 and January 2022 were included in the analysis. Single-cell RNA sequencing data from four prospectively enrolled participants were used to investigate the radiomic score-related TME. The 3D U-Net was trained and optimized for prostate cancer segmentation using diffusion-weighted imaging, and radiomic features of the target lesion were extracted. Predictive nomograms were developed via multivariate Cox proportional hazard regression analysis. The nomograms were assessed for discrimination, calibration, and clinical usefulness. In the development cohort, the clinical-radiomic nomogram had an AUC of 0.892 (95% confidence interval: 0.783--0.939), which was considerably greater than those of the radiomic signature and clinical model. The Hosmer-Lemeshow test demonstrated that the clinical-radiomic model performed well in both the development (P = 0.461) and validation (P = 0.722) cohorts. Decision curve analysis revealed that the clinical-radiomic nomogram displayed better clinical predictive usefulness than the clinical or radiomic signature alone in both cohorts. Radiomic scores were associated with a significant difference in the TME pattern. Our study demonstrated the feasibility of a DWI-based clinical-radiomic nomogram combined with deep learning for the prediction of 1-year BCR. The findings revealed that the radiomic score was associated with a distinctive tumor microenvironment.

Preoperative prediction model for benign and malignant gallbladder polyps on the basis of machine-learning algorithms.

Zeng J, Hu W, Wang Y, Jiang Y, Peng J, Li J, Liu X, Zhang X, Tan B, Zhao D, Li K, Zhang S, Cao J, Qu C

pubmed logopapersJun 10 2025
This study aimed to differentiate between benign and malignant gallbladder polyps preoperatively by developing a prediction model integrating preoperative transabdominal ultrasound and clinical features using machine-learning algorithms. A retrospective analysis was conducted on clinical and ultrasound data from 1,050 patients at 2 centers who underwent cholecystectomy for gallbladder polyps. Six machine-learning algorithms were used to develop preoperative models for predicting benign and malignant gallbladder polyps. Internal and external test cohorts evaluated model performance. The Shapley Additive Explanations algorithm was used to understand feature importance. The main study cohort included 660 patients with benign polyps and 285 patients with malignant polyps, randomly divided into a 3:1 stratified training and internal test cohorts. The external test cohorts consisted of 73 benign and 32 malignant polyps. In the training cohort, the Shapley Additive Explanations algorithm, on the basis of variables selected by Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression, further identified 6 key predictive factors: polyp size, age, fibrinogen, carbohydrate antigen 19-9, presence of stones, and cholinesterase. Using these factors, 6 predictive models were developed. The random forest model outperformed others, with an area under the curve of 0.963, 0.940, and 0.958 in the training, internal, and external test cohorts, respectively. Compared with previous studies, the random forest model demonstrated excellent clinical utility and predictive performance. In addition, the Shapley Additive Explanations algorithm was used to visualize feature importance, and an online calculation platform was developed. The random forest model, combining preoperative ultrasound and clinical features, accurately predicts benign and malignant gallbladder polyps, offering valuable guidance for clinical decision-making.

Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification

Rinat Prochii, Elizaveta Dakhova, Pavel Birulin, Maxim Sharaev

arxiv logopreprintJun 10 2025
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.
Page 20 of 47469 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.