Sort by:
Page 15 of 1471465 results

2nd trimester ultrasound (anomaly).

Carocha A, Vicente M, Bernardeco J, Rijo C, Cohen Á, Cruz J

pubmed logopapersJun 17 2025
The second-trimester ultrasound is a crucial tool in prenatal care, typically conducted between 18 and 24 weeks of gestation to evaluate fetal anatomy, growth, and mid-trimester screening. This article provides a comprehensive overview of the best practices and guidelines for performing this examination, with a focus on detecting fetal anomalies. The ultrasound assesses key structures and evaluates fetal growth by measuring biometric parameters, which are essential for estimating fetal weight. Additionally, the article discusses the importance of placental evaluation, amniotic fluid levels measurement, and the risk of preterm birth through cervical length measurements. Factors that can affect the accuracy of the scan, such as the skill of the operator, the quality of the equipment, and maternal conditions such as obesity, are discussed. The article also addresses the limitations of the procedure, including variability in detection. Despite these challenges, the second-trimester ultrasound remains a valuable screening and diagnostic tool, providing essential information for managing pregnancies, especially in high-risk cases. Future directions include improving imaging technology, integrating artificial intelligence for anomaly detection, and standardizing ultrasound protocols to enhance diagnostic accuracy and ensure consistent prenatal care.

Deep learning based colorectal cancer detection in medical images: A comprehensive analysis of datasets, methods, and future directions.

Gülmez B

pubmed logopapersJun 17 2025
This comprehensive review examines the current state and evolution of artificial intelligence applications in colorectal cancer detection through medical imaging from 2019 to 2025. The study presents a quantitative analysis of 110 high-quality publications and 9 publicly accessible medical image datasets used for training and validation. Various convolutional neural network architectures-including ResNet (40 implementations), VGG (18 implementations), and emerging transformer-based models (12 implementations)-for classification, object detection, and segmentation tasks are systematically categorized and evaluated. The investigation encompasses hyperparameter optimization techniques utilized to enhance model performance, with particular focus on genetic algorithms and particle swarm optimization approaches. The role of explainable AI methods in medical diagnosis interpretation is analyzed through visualization techniques such as Grad-CAM and SHAP. Technical limitations, including dataset scarcity, computational constraints, and standardization challenges, are identified through trend analysis. Research gaps in current methodologies are highlighted through comparative assessment of performance metrics across different architectural implementations. Potential future research directions, including multimodal learning and federated learning approaches, are proposed based on publication trend analysis. This review serves as a comprehensive reference for researchers in medical image analysis and clinical practitioners implementing AI-based colorectal cancer detection systems.

Next-generation machine learning model to measure the Norberg angle on canine hip radiographs increases accuracy and time to completion.

Hansen GC, Yao Y, Fischetti AJ, Gonzalez A, Porter I, Todhunter RJ, Zhang Y

pubmed logopapersJun 16 2025
To apply machine learning (ML) to measure the Norberg angle (NA) on canine ventrodorsal hip-extended pelvic radiographs. In this observational study, an NA-AI model was trained on real and synthetic radiographs. Additional radiographs were used for validation and testing. Each NA was predicted using a hybrid architecture derived from 2 ML vision models. The NAs were measured by 4 authors, and the model all were compared to each other. The time taken to correct the NAs predicted by the model was compared to unassisted human measurements. The NA-AI model was trained on 733 real and 1,474 synthetic radiographs; 105 real radiographs were used for validation and 128 for testing. The mean absolute error between each human measurement ranged from 3° to 10° ± SD = 3° to 10° with an intraclass correlation between humans of 0.38 to 0.92. The mean absolute error between the NA-AI model prediction and the human measurements was 5° to 6° ± SD = 5° (intraclass correlation, 0.39 to 0.94). Bland-Altman plots showed good agreement between human and AI measurements when the NAs were greater than 80°. The time taken to check the accuracy of the NA measurement compared to unassisted measurements was reduced by 45% to 80%. The NA-AI model proved more accurate than the original model except when the hip dysplasia was severe, and its assistance decreased the time needed to analyze radiographs. The assistance of the NA-AI model reduces the time taken for radiographic hip analysis for clinical applications. However, it is less reliable in cases involving severe osteoarthritic change, requiring manual review for such cases.

Integration of MRI radiomics and germline genetics to predict the IDH mutation status of gliomas.

Nakase T, Henderson GA, Barba T, Bareja R, Guerra G, Zhao Q, Francis SS, Gevaert O, Kachuri L

pubmed logopapersJun 16 2025
The molecular profiling of gliomas for isocitrate dehydrogenase (IDH) mutations currently relies on resected tumor samples, highlighting the need for non-invasive, preoperative biomarkers. We investigated the integration of glioma polygenic risk scores (PRS) and radiographic features for prediction of IDH mutation status. We used 256 radiomic features, a glioma PRS and demographic information in 158 glioma cases within elastic net and neural network models. The integration of glioma PRS with radiomics increased the area under the receiver operating characteristic curve (AUC) for distinguishing IDH-wildtype vs. IDH-mutant glioma from 0.83 to 0.88 (P<sub>ΔAUC</sub> = 6.9 × 10<sup>-5</sup>) in the elastic net model and from 0.91 to 0.92 (P<sub>ΔAUC</sub> = 0.32) in the neural network model. Incorporating age at diagnosis and sex further improved the classifiers (elastic net: AUC = 0.93, neural network: AUC = 0.93). Patients predicted to have IDH-mutant vs. IDH-wildtype tumors had significantly lower mortality risk (hazard ratio (HR) = 0.18, 95% CI: 0.08-0.40, P = 2.1 × 10<sup>-5</sup>), comparable to prognostic trajectories for biopsy-confirmed IDH status. The augmentation of imaging-based classifiers with genetic risk profiles may help delineate molecular subtypes and improve the timely, non-invasive clinical assessment of glioma patients.

Whole-lesion-aware network based on freehand ultrasound video for breast cancer assessment: a prospective multicenter study.

Han J, Gao Y, Huo L, Wang D, Xie X, Zhang R, Xiao M, Zhang N, Lei M, Wu Q, Ma L, Sun C, Wang X, Liu L, Cheng S, Tang B, Wang L, Zhu Q, Wang Y

pubmed logopapersJun 16 2025
The clinical application of artificial intelligence (AI) models based on breast ultrasound static images has been hindered in real-world workflows due to operator-dependence of standardized image acquisition and incomplete view of breast lesions on static images. To better exploit the real-time advantages of ultrasound and more conducive to clinical application, we proposed a whole-lesion-aware network based on freehand ultrasound video (WAUVE) scanning in an arbitrary direction for predicting overall breast cancer risk score. The WAUVE was developed using 2912 videos (2912 lesions) of 2771 patients retrospectively collected from May 2020 to August 2022 in two hospitals. We compared the diagnostic performance of WAUVE with static 2D-ResNet50 and dynamic TimeSformer models in the internal validation set. Subsequently, a dataset comprising 190 videos (190 lesions) from 175 patients prospectively collected from December 2022 to April 2023 in two other hospitals, was used as an independent external validation set. A reader study was conducted by four experienced radiologists on the external validation set. We compared the diagnostic performance of WAUVE with the four experienced radiologists and evaluated the auxiliary value of model for radiologists. The WAUVE demonstrated superior performance compared to the 2D-ResNet50 model, while similar to the TimeSformer model. In the external validation set, WAUVE achieved an area under the receiver operating characteristic curve (AUC) of 0.8998 (95% CI = 0.8529-0.9439), and showed a comparable diagnostic performance to that of four experienced radiologists in terms of sensitivity (97.39% vs. 98.48%, p = 0.36), specificity (49.33% vs. 50.00%, p = 0.92), and accuracy (78.42% vs.79.34%, p = 0.60). With the WAUVE model assistance, the average specificity of four experienced radiologists was improved by 6.67%, and higher consistency was achieved (from 0.807 to 0.838). The WAUVE based on non-standardized ultrasound scanning demonstrated excellent performance in breast cancer assessment which yielded outcomes similar to those of experienced radiologists, indicating the clinical application of the WAUVE model promising.

Imaging-Based AI for Predicting Lymphovascular Space Invasion in Cervical Cancer: Systematic Review and Meta-Analysis.

She L, Li Y, Wang H, Zhang J, Zhao Y, Cui J, Qiu L

pubmed logopapersJun 16 2025
The role of artificial intelligence (AI) in enhancing the accuracy of lymphovascular space invasion (LVSI) detection in cervical cancer remains debated. This meta-analysis aimed to evaluate the diagnostic accuracy of imaging-based AI for predicting LVSI in cervical cancer. We conducted a comprehensive literature search across multiple databases, including PubMed, Embase, and Web of Science, identifying studies published up to November 9, 2024. Studies were included if they evaluated the diagnostic performance of imaging-based AI models in detecting LVSI in cervical cancer. We used a bivariate random-effects model to calculate pooled sensitivity and specificity with corresponding 95% confidence intervals. Study heterogeneity was assessed using the I2 statistic. Of 403 studies identified, 16 studies (2514 patients) were included. For the interval validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting LVSI were 0.84 (95% CI 0.79-0.87), 0.78 (95% CI 0.75-0.81), and 0.87 (95% CI 0.84-0.90). For the external validation set, the pooled sensitivity, specificity, and AUC for detecting LVSI were 0.79 (95% CI 0.70-0.86), 0.76 (95% CI 0.67-0.83), and 0.84 (95% CI 0.81-0.87). Using the likelihood ratio test for subgroup analysis, deep learning demonstrated significantly higher sensitivity compared to machine learning (P=.01). Moreover, AI models based on positron emission tomography/computed tomography exhibited superior sensitivity relative to those based on magnetic resonance imaging (P=.01). Imaging-based AI, particularly deep learning algorithms, demonstrates promising diagnostic performance in predicting LVSI in cervical cancer. However, the limited external validation datasets and the retrospective nature of the research may introduce potential biases. These findings underscore AI's potential as an auxiliary diagnostic tool, necessitating further large-scale prospective validation.

Real-time cardiac cine MRI: A comparison of a diffusion probabilistic model with alternative state-of-the-art image reconstruction techniques for undersampled spiral acquisitions.

Schad O, Heidenreich JF, Petri N, Kleineisel J, Sauer S, Bley TA, Nordbeck P, Petritsch B, Wech T

pubmed logopapersJun 16 2025
Electrocardiogram (ECG)-gated cine imaging in breath-hold enables high-quality diagnostics in most patients but can be compromised by arrhythmia and inability to hold breath. Real-time cardiac MRI offers faster and robust exams without these limitations. To achieve sufficient acceleration, advanced reconstruction methods, which transfer data into high-quality images, are required. In this study, undersampled spiral balanced SSFP (bSSFP) real-time data in free-breathing were acquired at 1.5T in 16 healthy volunteers and five arrhythmic patients, with ECG-gated Cartesian cine in breath-hold serving as clinical reference. Image reconstructions were performed using a tailored and specifically trained score-based diffusion model, compared to a variational network and different compressed sensing approaches. The techniques were assessed using an expert reader study, scalar metric calculations, difference images against a segmented reference, and Bland-Altman analysis of cardiac functional parameters. In participants with irregular RR-cycles, spiral real-time acquisitions showed superior image quality compared to the clinical reference. Quantitative and qualitative metrics indicate enhanced image quality of the diffusion model in comparison to the alternative reconstruction methods, although improvements over the variational network were minor. Slightly higher ejection fractions for the real-time diffusion reconstructions were exhibited relative to the clinical references with a bias of 1.1 ± 5.7% for healthy subjects. The proposed real-time technique enables free-breathing acquisitions of spatio-temporal images with high quality, covering the entire heart in less than 1 min. Evaluation of ejection fraction using the ECG-gated reference can be vulnerable to arrhythmia and averaging effects, highlighting the need for real-time approaches. Prolonged inference times and stochastic variability of the diffusion reconstruction represent obstacles to overcome for clinical translation.

A Semi-supervised Ultrasound Image Segmentation Network Integrating Enhanced Mask Learning and Dynamic Temperature-controlled Self-distillation.

Xu L, Huang Y, Zhou H, Mao Q, Yin W

pubmed logopapersJun 16 2025
Ultrasound imaging is widely used in clinical practice due to its advantages of no radiation and real-time capability. However, its image quality is often degraded by speckle noise, low contrast, and blurred boundaries, which pose significant challenges for automatic segmentation. In recent years, deep learning methods have achieved notable progress in ultrasound image segmentation. Nonetheless, these methods typically require large-scale annotated datasets, incur high computational costs, and suffer from slow inference speeds, limiting their clinical applicability. To overcome these limitations, we propose EML-DMSD, a novel semi-supervised segmentation network that combines Enhanced Mask Learning (EML) and Dynamic Temperature-Controlled Multi-Scale Self-Distillation (DMSD). The EML module improves the model's robustness to noise and boundary ambiguity, while the DMSD module introduces a teacher-free, multi-scale self-distillation strategy with dynamic temperature adjustment to boost inference efficiency and reduce reliance on extensive resources. Experiments on multiple ultrasound benchmark datasets demonstrate that EML-DMSD achieves superior segmentation accuracy with efficient inference, highlighting its strong generalization ability and clinical potential.

Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma.

Wang W, Ning Z, Zhang J, Zhang Y, Wang W

pubmed logopapersJun 16 2025
The non-invasive assessment of central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) plays a crucial role in assisting treatment decision and prognosis planning. This study aims to use an interpretable deep fuzzy network guided by expert knowledge to predict the CLNM status of patients with PTC from ultrasound images. A total of 1019 PTC patients were enrolled in this study, comprising 465 CLNM patients and 554 non-CLNM patients. Pathological diagnosis served as the gold standard to determine metastasis status. Clinical and morphological features of thyroid were collected as expert knowledge to guide the deep fuzzy network in predicting CLNM status. The network consisted of a region of interest (ROI) segmentation module, a knowledge-aware feature extraction module, and a fuzzy prediction module. The network was trained on 652 patients, validated on 163 patients and tested on 204 patients. The model exhibited promising performance in predicting CLNM status, achieving the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity and specificity of 0.786 (95% CI 0.720-0.846), 0.745 (95% CI 0.681-0.799), 0.727 (95% CI 0.636-0.819), 0.696 (95% CI 0.594-0.789), and 0.786 (95% CI 0.712-0.864), respectively. In addition, the rules of the fuzzy system in the model are easy to understand and explain, and have good interpretability. The deep fuzzy network guided by expert knowledge predicted CLNM status of PTC patients with high accuracy and good interpretability, and may be considered as an effective tool to guide preoperative clinical decision-making.
Page 15 of 1471465 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.