Sort by:
Page 125 of 1261251 results

Providing context: Extracting non-linear and dynamic temporal motifs from brain activity.

Geenjaar E, Kim D, Calhoun V

pubmed logopapersJan 1 2025
Approaches studying the dynamics of resting-state functional magnetic resonance imaging (rs-fMRI) activity often focus on time-resolved functional connectivity (tr-FC). While many tr-FC approaches have been proposed, most are linear approaches, e.g. computing the linear correlation at a timestep or within a window. In this work, we propose to use a generative non-linear deep learning model, a disentangled variational autoencoder (DSVAE), that factorizes out window-specific (context) information from timestep-specific (local) information. This has the advantage of allowing our model to capture differences at multiple temporal scales. We find that by separating out temporal scales our model's window-specific embeddings, or as we refer to them, context embeddings, more accurately separate windows from schizophrenia patients and control subjects than baseline models and the standard tr-FC approach in a low-dimensional space. Moreover, we find that for individuals with schizophrenia, our model's context embedding space is significantly correlated with both age and symptom severity. Interestingly, patients appear to spend more time in three clusters, one closer to controls which shows increased visual-sensorimotor, cerebellar-subcortical, and reduced cerebellar-visual functional network connectivity (FNC), an intermediate station showing increased subcortical-sensorimotor FNC, and one that shows decreased visual-sensorimotor, decreased subcortical-sensorimotor, and increased visual-subcortical domains. We verify that our model captures features that are complementary to - but not the same as - standard tr-FC features. Our model can thus help broaden the neuroimaging toolset in analyzing fMRI dynamics and shows potential as an approach for finding psychiatric links that are more sensitive to individual and group characteristics.

Refining CT image analysis: Exploring adaptive fusion in U-nets for enhanced brain tissue segmentation.

Chen BC, Shen CY, Chai JW, Hwang RH, Chiang WC, Chou CH, Liu WM

pubmed logopapersJan 1 2025
Non-contrast Computed Tomography (NCCT) quickly diagnoses acute cerebral hemorrhage or infarction. However, Deep-Learning (DL) algorithms often generate false alarms (FA) beyond the cerebral region. We introduce an enhanced brain tissue segmentation method for infarction lesion segmentation (ILS). This method integrates an adaptive result fusion strategy to confine the search operation within cerebral tissue, effectively reducing FAs. By leveraging fused brain masks, DL-based ILS algorithms focus on pertinent radiomic correlations. Various U-Net models underwent rigorous training, with exploration of diverse fusion strategies. Further refinement entailed applying a 9x9 Gaussian filter with unit standard deviation followed by binarization to mitigate false positives. Performance evaluation utilized Intersection over Union (IoU) and Hausdorff Distance (HD) metrics, complemented by external validation on a subset of the COCO dataset. Our study comprised 20 ischemic stroke patients (14 males, 4 females) with an average age of 68.9 ± 11.7 years. Fusion with UNet2+ and UNet3 + yielded an IoU of 0.955 and an HD of 1.33, while fusion with U-net, UNet2 + , and UNet3 + resulted in an IoU of 0.952 and an HD of 1.61. Evaluation on the COCO dataset demonstrated an IoU of 0.463 and an HD of 584.1 for fusion with UNet2+ and UNet3 + , and an IoU of 0.453 and an HD of 728.0 for fusion with U-net, UNet2 + , and UNet3 + . Our adaptive fusion strategy significantly diminishes FAs and enhances the training efficacy of DL-based ILS algorithms, surpassing individual U-Net models. This methodology holds promise as a versatile, data-independent approach for cerebral lesion segmentation.

Neurovision: A deep learning driven web application for brain tumour detection using weight-aware decision approach.

Santhosh TRS, Mohanty SN, Pradhan NR, Khan T, Derbali M

pubmed logopapersJan 1 2025
In recent times, appropriate diagnosis of brain tumour is a crucial task in medical system. Therefore, identification of a potential brain tumour is challenging owing to the complex behaviour and structure of the human brain. To address this issue, a deep learning-driven framework consisting of four pre-trained models viz DenseNet169, VGG-19, Xception, and EfficientNetV2B2 is developed to classify potential brain tumours from medical resonance images. At first, the deep learning models are trained and fine-tuned on the training dataset, obtained validation scores of trained models are considered as model-wise weights. Then, trained models are subsequently evaluated on the test dataset to generate model-specific predictions. In the weight-aware decision module, the class-bucket of a probable output class is updated with the weights of deep models when their predictions match the class. Finally, the bucket with the highest aggregated value is selected as the final output class for the input image. A novel weight-aware decision mechanism is a key feature of this framework, which effectively deals tie situations in multi-class classification compared to conventional majority-based techniques. The developed framework has obtained promising results of 98.7%, 97.52%, and 94.94% accuracy on three different datasets. The entire framework is seamlessly integrated into an end-to-end web-application for user convenience. The source code, dataset and other particulars are publicly released at https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app [Rishik Sai Santhosh, "Brain Tumour Image Classification Application," https://github.com/SaiSanthosh1508/Brain-Tumour-Image-classification-app] for academic, research and other non-commercial usage.

Deep learning-based fine-grained assessment of aneurysm wall characteristics using 4D-CT angiography.

Kumrai T, Maekawa T, Chen Y, Sugiyama Y, Takagaki M, Yamashiro S, Takizawa K, Ichinose T, Ishida F, Kishima H

pubmed logopapersJan 1 2025
This study proposes a novel deep learning-based approach for aneurysm wall characteristics, including thin-walled (TW) and hyperplastic-remodeling (HR) regions. We analyzed fifty-two unruptured cerebral aneurysms employing 4D-computed tomography angiography (4D-CTA) and intraoperative recordings. The TW and HR regions were identified in intraoperative images. The 3D trajectories of observation points on aneurysm walls were processed to compute a time series of 3D speed, acceleration, and smoothness of motion, aiming to evaluate the aneurysm wall characteristics. To facilitate point-level risk evaluation using the time-series data, we developed a convolutional neural network (CNN)-long- short-term memory (LSTM)-based regression model enriched with attention layers. In order to accommodate patient heterogeneity, a patient-independent feature extraction mechanism was introduced. Furthermore, unlabeled data were incorporated to enhance the data-intensive deep model. The proposed method achieved an average diagnostic accuracy of 92%, significantly outperforming a simpler model lacking attention. These results underscore the significance of patient-independent feature extraction and the use of unlabeled data. This study demonstrates the efficacy of a fine-grained deep learning approach in predicting aneurysm wall characteristics using 4D-CTA. Notably, incorporating an attention-based network structure proved to be particularly effective, contributing to enhanced performance.

MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF).

Khan H, Alutaibi AI, Tejani GG, Sharma SK, Khan AR, Ahmad F, Mousavirad SJ

pubmed logopapersJan 1 2025
This work aims to promote early and accurate diagnosis of Temporal Lobe Epilepsy (TLE) by developing state-of-the-art deep learning techniques, with the goal of minimizing the consequences of epilepsy on individuals and society. Current approaches for TLE detection have drawbacks, including applicability to particular MRI sequences, moderate ability to determine the side of the onset zones, and weak cross-validation with different patient groups, which hampers their practical use. To overcome these difficulties, a new Hybrid Attention-Enhanced Transformer Network (HAETN) is introduced for early TLE diagnosis. This approach uses newly developed Fuzzy-AAL Segmentation Framework (FASF) which is a combination of Fuzzy Possibilistic C-Means (FPCM) algorithm for segmentation of tissue and AAL labelling for labelling of tissues. Furthermore, an effective feature selection method is proposed using the Dipper- grey wolf optimization (DGWO) algorithm to improve the performance of the proposed model. The performance of the proposed method is thoroughly assessed by accuracy, sensitivity, and F1-score. The performance of the suggested approach is evaluated on the Temporal Lobe Epilepsy-UNAM MRI Dataset, where it attains an accuracy of 98.61%, a sensitivity of 99.83%, and F1-score of 99.82%, indicating its efficiency and applicability in clinical practice.

Convolutional neural network using magnetic resonance brain imaging to predict outcome from tuberculosis meningitis.

Dong THK, Canas LS, Donovan J, Beasley D, Thuong-Thuong NT, Phu NH, Ha NT, Ourselin S, Razavi R, Thwaites GE, Modat M

pubmed logopapersJan 1 2025
Tuberculous meningitis (TBM) leads to high mortality, especially amongst individuals with HIV. Predicting the incidence of disease-related complications is challenging, for which purpose the value of brain magnetic resonance imaging (MRI) has not been well investigated. We used a convolutional neural network (CNN) to explore the complementary contribution of brain MRI to the conventional prognostic determinants. We pooled data from two randomised control trials of HIV-positive and HIV-negative adults with clinical TBM in Vietnam to predict the occurrence of death or new neurological complications in the first two months after the subject's first MRI session. We developed and compared three models: a logistic regression with clinical, demographic and laboratory data as reference, a CNN that utilised only T1-weighted MRI volumes, and a model that fused all available information. All models were fine-tuned using two repetitions of 5-fold cross-validation. The final evaluation was based on a random 70/30 training/test split, stratified by the outcome and HIV status. Based on the selected model, we explored the interpretability maps derived from the models. 215 patients were included, with an event prevalence of 22.3%. On the test set our non-imaging model had higher AUC (71.2% [Formula: see text] 1.1%) than the imaging-only model (67.3% [Formula: see text] 2.6%). The fused model was superior to both, with an average AUC = 77.3% [Formula: see text] 4.0% in the test set. The non-imaging variables were more informative in the HIV-positive group, while the imaging features were more predictive in the HIV-negative group. All three models performed better in the HIV-negative cohort. The interpretability maps show the model's focus on the lateral fissures, the corpus callosum, the midbrain, and peri-ventricular tissues. Imaging information can provide added value to predict unwanted outcomes of TBM. However, to confirm this finding, a larger dataset is needed.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.

Fully automated MRI-based analysis of the locus coeruleus in aging and Alzheimer's disease dementia using ELSI-Net.

Dünnwald M, Krohn F, Sciarra A, Sarkar M, Schneider A, Fliessbach K, Kimmich O, Jessen F, Rostamzadeh A, Glanz W, Incesoy EI, Teipel S, Kilimann I, Goerss D, Spottke A, Brustkern J, Heneka MT, Brosseron F, Lüsebrink F, Hämmerer D, Düzel E, Tönnies K, Oeltze-Jafra S, Betts MJ

pubmed logopapersJan 1 2025
The locus coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD). Magnetic resonance imaging-based LC features have shown potential to assess LC integrity in vivo. We present a deep learning-based LC segmentation and feature extraction method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert raters and previously published LC atlases were assessed. We aimed to reproduce previously reported differences in LC integrity in aging and AD dementia and correlate extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology. ELSI-Net demonstrated high agreement to expert raters and published atlases. Previously reported group differences in LC integrity were detected and correlations to CSF biomarkers were found. Although we found excellent performance, further evaluations on more diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-Net's general applicability. We provide a thorough evaluation of a fully automatic locus coeruleus (LC) segmentation method termed Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) in aging and Alzheimer's disease (AD) dementia.ELSI-Net outperforms previous work and shows high agreement with manual ratings and previously published LC atlases.ELSI-Net replicates previously shown LC group differences in aging and AD.ELSI-Net's LC mask volume correlates with cerebrospinal fluid biomarkers of AD pathology.

Brain tumor classification using MRI images and deep learning techniques.

Wong Y, Su ELM, Yeong CF, Holderbaum W, Yang C

pubmed logopapersJan 1 2025
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes deep learning (DL) and Magnetic Resonance Imaging (MRI) images. The main purpose of this research is to develop a model that can accurately detect and classify different types of brain tumors, including glioma, meningioma, pituitary tumors, and normal brain scans. A convolutional neural network (CNN) architecture with pretrained VGG16 as the base model is employed, and diverse public datasets are utilized to ensure comprehensive representation. Data augmentation techniques are employed to enhance the training dataset, resulting in a total of 17,136 brain MRI images across the four classes. The accuracy of this model was 99.24%, a higher accuracy than other similar works, demonstrating its potential clinical utility. This higher accuracy was achieved mainly due to the utilization of a large and diverse dataset, the improvement of network configuration, the application of a fine-tuning strategy to adjust pretrained weights, and the implementation of data augmentation techniques in enhancing classification performance for brain tumor detection. In addition, a web application was developed by leveraging HTML and Dash components to enhance usability, allowing for easy image upload and tumor prediction. By harnessing artificial intelligence (AI), the developed system addresses the need to reduce human error and enhance diagnostic accuracy. The proposed approach provides an efficient and reliable solution for brain tumor classification, facilitating early diagnosis and enabling timely medical interventions. This work signifies a potential advancement in brain tumor classification, promising improved patient care and outcomes.

Radiomics machine learning based on asymmetrically prominent cortical and deep medullary veins combined with clinical features to predict prognosis in acute ischemic stroke: a retrospective study.

Li H, Chang C, Zhou B, Lan Y, Zang P, Chen S, Qi S, Ju R, Duan Y

pubmed logopapersJan 1 2025
Acute ischemic stroke (AIS) has a poor prognosis and a high recurrence rate. Predicting the outcomes of AIS patients in the early stages of the disease is therefore important. The establishment of intracerebral collateral circulation significantly improves the survival of brain cells and the outcomes of AIS patients. However, no machine learning method has been applied to investigate the correlation between the dynamic evolution of intracerebral venous collateral circulation and AIS prognosis. Therefore, we employed a support vector machine (SVM) algorithm to analyze asymmetrically prominent cortical veins (APCVs) and deep medullary veins (DMVs) to establish a radiomic model for predicting the prognosis of AIS by combining clinical indicators. The magnetic resonance imaging (MRI) data and clinical indicators of 150 AIS patients were retrospectively analyzed. Regions of interest corresponding to the DMVs and APCVs were delineated, and least absolute shrinkage and selection operator (LASSO) regression was used to select features extracted from these regions. An APCV-DMV radiomic model was created via the SVM algorithm, and independent clinical risk factors associated with AIS were combined with the radiomic model to generate a joint model. The SVM algorithm was selected because of its proven efficacy in handling high-dimensional radiomic data compared with alternative classifiers (<i>e.g.</i>, random forest) in pilot experiments. Nine radiomic features associated with AIS patient outcomes were ultimately selected. In the internal training test set, the AUCs of the clinical, DMV-APCV radiomic and joint models were 0.816, 0.976 and 0.996, respectively. The DeLong test revealed that the predictive performance of the joint model was better than that of the individual models, with a test set AUC of 0.996, sensitivity of 0.905, and specificity of 1.000 (<i>P</i> < 0.05). Using radiomic methods, we propose a novel joint predictive model that combines the imaging histologic features of the APCV and DMV with clinical indicators. This model quantitatively characterizes the morphological and functional attributes of venous collateral circulation, elucidating its important role in accurately evaluating the prognosis of patients with AIS and providing a noninvasive and highly accurate imaging tool for early prognostic prediction.
Page 125 of 1261251 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.