Sort by:
Page 12 of 40393 results

Deep supervised transformer-based noise-aware network for low-dose PET denoising across varying count levels.

Azimi MS, Felfelian V, Zeraatkar N, Dadgar H, Arabi H, Zaidi H

pubmed logopapersJul 8 2025
Reducing radiation dose from PET imaging is essential to minimize cancer risks; however, it often leads to increased noise and degraded image quality, compromising diagnostic reliability. Recent advances in deep learning have shown promising results in addressing these limitations through effective denoising. However, existing networks trained on specific noise levels often fail to generalize across diverse acquisition conditions. Moreover, training multiple models for different noise levels is impractical due to data and computational constraints. This study aimed to develop a supervised Swin Transformer-based unified noise-aware (ST-UNN) network that handles diverse noise levels and reconstructs high-quality images in low-dose PET imaging. We present a Swin Transformer-based Noise-Aware Network (ST-UNN), which incorporates multiple sub-networks, each designed to address specific noise levels ranging from 1 % to 10 %. An adaptive weighting mechanism dynamically integrates the outputs of these sub-networks to achieve effective denoising. The model was trained and evaluated using PET/CT dataset encompassing the entire head and malignant lesions in the head and neck region. Performance was assessed using a combination of structural and statistical metrics, including the Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), Standardized Uptake Value (SUV) mean bias, SUV<sub>max</sub> bias, and Root Mean Square Error (RMSE). This comprehensive evaluation ensured reliable results for both global and localized regions within PET images. The ST-UNN consistently outperformed conventional networks, particularly in ultra-low-dose scenarios. At 1 % count level, it achieved a PSNR of 34.77, RMSE of 0.05, and SSIM of 0.97, notably surpassing the baseline networks. It also achieved the lowest SUV<sub>mean</sub> bias (0.08) and RMSE lesion (0.12) at this level. Across all count levels, ST-UNN maintained high performance and low error, demonstrating strong generalization and diagnostic integrity. ST-UNN offers a scalable, transformer-based solution for low-dose PET imaging. By dynamically integrating sub-networks, it effectively addresses noise variability and provides superior image quality, thereby advancing the capabilities of low-dose and dynamic PET imaging.

Self-supervised Deep Learning for Denoising in Ultrasound Microvascular Imaging

Lijie Huang, Jingyi Yin, Jingke Zhang, U-Wai Lok, Ryan M. DeRuiter, Jieyang Jin, Kate M. Knoll, Kendra E. Petersen, James D. Krier, Xiang-yang Zhu, Gina K. Hesley, Kathryn A. Robinson, Andrew J. Bentall, Thomas D. Atwell, Andrew D. Rule, Lilach O. Lerman, Shigao Chen, Chengwu Huang

arxiv logopreprintJul 7 2025
Ultrasound microvascular imaging (UMI) is often hindered by low signal-to-noise ratio (SNR), especially in contrast-free or deep tissue scenarios, which impairs subsequent vascular quantification and reliable disease diagnosis. To address this challenge, we propose Half-Angle-to-Half-Angle (HA2HA), a self-supervised denoising framework specifically designed for UMI. HA2HA constructs training pairs from complementary angular subsets of beamformed radio-frequency (RF) blood flow data, across which vascular signals remain consistent while noise varies. HA2HA was trained using in-vivo contrast-free pig kidney data and validated across diverse datasets, including contrast-free and contrast-enhanced data from pig kidneys, as well as human liver and kidney. An improvement exceeding 15 dB in both contrast-to-noise ratio (CNR) and SNR was observed, indicating a substantial enhancement in image quality. In addition to power Doppler imaging, denoising directly in the RF domain is also beneficial for other downstream processing such as color Doppler imaging (CDI). CDI results of human liver derived from the HA2HA-denoised signals exhibited improved microvascular flow visualization, with a suppressed noisy background. HA2HA offers a label-free, generalizable, and clinically applicable solution for robust vascular imaging in both contrast-free and contrast-enhanced UMI.

Usefulness of compressed sensing coronary magnetic resonance angiography with deep learning reconstruction.

Tabo K, Kido T, Matsuda M, Tokui S, Mizogami G, Takimoto Y, Matsumoto M, Miyoshi M, Kido T

pubmed logopapersJul 7 2025
Coronary magnetic resonance angiography (CMRA) scans are generally time-consuming. CMRA with compressed sensing (CS) and artificial intelligence (AI) (CSAI CMRA) is expected to shorten the imaging time while maintaining image quality. This study aimed to evaluate the usefulness of CS and AI for non-contrast CMRA. Twenty volunteers underwent both CS and conventional CMRA. Conventional CMRA employed parallel imaging (PI) with an acceleration factor of 2. CS CMRA employed a combination of PI and CS with an acceleration factor of 3. Deep learning reconstruction was performed offline on the CS CMRA data after scanning, which was defined as CSAI CMRA. We compared the imaging time, image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and vessel sharpness for each CMRA scan. The CS CMRA scan time was significantly shorter than that of conventional CMRA (460 s [343,753 s] vs. 727 s [567,939 s], p < 0.001). The image quality scores of the left anterior descending artery (LAD) and left circumflex artery (LCX) were significantly higher in conventional CMRA (LAD: 3.3 ± 0.7, LCX: 3.3 ± 0.7) and CSAI CMRA (LAD: 3.7 ± 0.6, LCX: 3.5 ± 0.7) than the CS CMRA (LAD: 2.9 ± 0.6, LCX: 2.9 ± 0.6) (p < 0.05). The right coronary artery scores did not vary among the three groups (p = 0.087). The SNR and CNR were significantly higher in CSAI CMRA (SNR: 12.3 [9.7, 13.7], CNR: 12.3 [10.5, 14.5]) and CS CMRA (SNR: 10.5 [8.2, 12.6], CNR: 9.5 [7.9, 12.6]) than conventional CMRA (SNR: 9.0 [7.8, 11.1], CNR: 7.7 [6.0, 10.1]) (p < 0.01). The vessel sharpness was significantly higher in CSAI CMRA (LAD: 0.87 [0.78, 0.91]) (p < 0.05), with no significant difference between the CS CMRA (LAD: 0.77 [0.71, 0.83]) and conventional CMRA (LAD: 0.77 [0.71, 0.86]). CSAI CMRA can shorten the imaging time while maintaining good image quality.

Introducing Image-Space Preconditioning in the Variational Formulation of MRI Reconstructions

Bastien Milani, Jean-Baptist Ledoux, Berk Can Acikgoz, Xavier Richard

arxiv logopreprintJul 7 2025
The aim of the present article is to enrich the comprehension of iterative magnetic resonance imaging (MRI) reconstructions, including compressed sensing (CS) and iterative deep learning (DL) reconstructions, by describing them in the general framework of finite-dimensional inner-product spaces. In particular, we show that image-space preconditioning (ISP) and data-space preconditioning (DSP) can be formulated as non-conventional inner-products. The main gain of our reformulation is an embedding of ISP in the variational formulation of the MRI reconstruction problem (in an algorithm-independent way) which allows in principle to naturally and systematically propagate ISP in all iterative reconstructions, including many iterative DL and CS reconstructions where preconditioning is lacking. The way in which we apply linear algebraic tools to MRI reconstructions as presented in this article is a novelty. A secondary aim of our article is to offer a certain didactic material to scientists who are new in the field of MRI reconstruction. Since we explore here some mathematical concepts of reconstruction, we take that opportunity to recall some principles that may be understood for experts, but which may be hard to find in the literature for beginners. In fact, the description of many mathematical tools of MRI reconstruction is fragmented in the literature or sometimes missing because considered as a general knowledge. Further, some of those concepts can be found in mathematic manuals, but not in a form that is oriented toward MRI. For example, we think of the conjugate gradient descent, the notion of derivative with respect to non-conventional inner products, or simply the notion of adjoint. The authors believe therefore that it is beneficial for their field of research to dedicate some space to such a didactic material.

2-D Stationary Wavelet Transform and 2-D Dual-Tree DWT for MRI Denoising.

Talbi M, Nasraoui B, Alfaidi A

pubmed logopapersJul 7 2025
The noise emergence in the digital image can occur throughout image acquisition, transmission, and processing steps. Consequently, eliminating the noise from the digital image is required before further processing. This study aims to denoise noisy images (including Magnetic Resonance Images (<b>MRIs</b>)) by employing our proposed image denoising approach. This proposed approach is based on the Stationary Wavelet Transform (<b>SWT 2-D</b>) and the <b>2 - D</b> Dual-Tree Discrete Wavelet Transform (<b>DWT</b>). The first step of this approach consists of applying the 2 - D Dual-Tree DWT to the noisy image to obtain noisy wavelet coefficients. The second step of this approach consists of denoising each of these coefficients by applying an SWT 2-D based denoising technique. The denoised image is finally obtained by applying the inverse of the 2-D Dual-Tree <b>DWT</b> to the denoised coefficients obtained in the second step. The proposed image denoising approach is evaluated by comparing it to four denoising techniques existing in literature. The latters are the image denoising technique based on thresholding in the <b>SWT-2D</b> domain, the image denoising technique based on deep neural network, the image denoising technique based on soft thresholding in the domain of 2-D Dual-Tree DWT, and Non-local Means Filter. The proposed denoising approach, and the other four techniques previously mentioned, are applied to a number of noisy grey scale images and noisy Magnetic Resonance Images (MRIs) and the obtained results are in terms of <b>PSNR</b> (Peak Signal to Noise Ratio), <b>SSIM</b> (Structural Similarity), <b>NMSE</b> (Normalized Mean Square Error) and Feature Similarity (<b>FSIM</b>). These results show that the proposed image denoising approach outperforms the other denoising techniques applied for our evaluation. In comparison with the four denoising techniques applied for our evaluation, the proposed approach permits to obtain highest values of <b>PSNR, SSIM</b> and <b>FSIM</b> and the lowest values of <b>NMSE</b>. Moreover, in cases where the noise level <b>σ = 10</b> or <b>σ = 20</b>, this approach permits the elimination of the noise from the noisy images and introduces slight distortions on the details of the original images. However, in case where <b>σ = 30</b> or <b>σ = 40</b>, this approach eliminates a great part of the noise and introduces some distortions on the original images. The performance of this approach is proven by comparing it to four image denoising techniques existing in literature. These techniques are the denoising technique based on thresholding in the SWT-2D domain, the image denoising technique based on a deep neural network, the image denoising technique based on soft thresholding in the domain of <b>2 - D</b> Dual-Tree <b>DWT</b> and the Non-local Means Filter. All these denoising techniques, including our approach, are applied to a number of noisy grey scale images and noisy <b>MRIs</b>, and the obtained results are in terms of <b>PSNR</b> (Peak Signal to Noise Ratio), <b>SSIM</b>(Structural Similarity), <b>NMSE</b> (Normalized Mean Square Error) and <b>FSIM</b> (Feature Similarity). These results show that this proposed approach outperforms the four denoising techniques applied for our evaluation.

Introducing Image-Space Preconditioning in the Variational Formulation of MRI Reconstructions

Bastien Milani, Jean-Baptist Ledoux, Berk Can Acikgoz, Xavier Richard

arxiv logopreprintJul 7 2025
The aim of the present article is to enrich the comprehension of iterative magnetic resonance imaging (MRI) reconstructions, including compressed sensing (CS) and iterative deep learning (DL) reconstructions, by describing them in the general framework of finite-dimensional inner-product spaces. In particular, we show that image-space preconditioning (ISP) and data-space preconditioning (DSP) can be formulated as non-conventional inner-products. The main gain of our reformulation is an embedding of ISP in the variational formulation of the MRI reconstruction problem (in an algorithm-independent way) which allows in principle to naturally and systematically propagate ISP in all iterative reconstructions, including many iterative DL and CS reconstructions where preconditioning is lacking. The way in which we apply linear algebraic tools to MRI reconstructions as presented in this article is a novelty. A secondary aim of our article is to offer a certain didactic material to scientists who are new in the field of MRI reconstruction. Since we explore here some mathematical concepts of reconstruction, we take that opportunity to recall some principles that may be understood for experts, but which may be hard to find in the literature for beginners. In fact, the description of many mathematical tools of MRI reconstruction is fragmented in the literature or sometimes missing because considered as a general knowledge. Further, some of those concepts can be found in mathematic manuals, but not in a form that is oriented toward MRI. For example, we think of the conjugate gradient descent, the notion of derivative with respect to non-conventional inner products, or simply the notion of adjoint. The authors believe therefore that it is beneficial for their field of research to dedicate some space to such a didactic material.

FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging

Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab

arxiv logopreprintJul 6 2025
The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.

Impact of super-resolution deep learning-based reconstruction for hippocampal MRI: A volunteer and phantom study.

Takada S, Nakaura T, Yoshida N, Uetani H, Shiraishi K, Kobayashi N, Matsuo K, Morita K, Nagayama Y, Kidoh M, Yamashita Y, Takayanagi R, Hirai T

pubmed logopapersJul 5 2025
To evaluate the effects of super-resolution deep learning-based reconstruction (SR-DLR) on thin-slice T2-weighted hippocampal MR image quality using 3 T MRI, in both human volunteers and phantoms. Thirteen healthy volunteers underwent hippocampal MRI at standard and high resolutions. Original (standard-resolution; StR) images were reconstructed with and without deep learning-based reconstruction (DLR) (Matrix = 320 × 320), and with SR-DLR (Matrix = 960 × 960). High-resolution (HR) images were also reconstructed with/without DLR (Matrix = 960 × 960). Contrast, contrast-to-noise ratio (CNR), and septum slope were analyzed. Two radiologists evaluated the images for noise, contrast, artifacts, sharpness, and overall quality. Quantitative and qualitative results are reported as medians and interquartile ranges (IQR). Comparisons used the Wilcoxon signed-rank test with Holm correction. We also scanned an American College of Radiology (ACR) phantom to evaluate the ability of our SR-DLR approach to reduce artifacts induced by zero-padding interpolation (ZIP). SR-DLR exhibited contrast comparable to original images and significantly higher than HR-images. Its slope was comparable to that of HR images but was significantly steeper than that of StR images (p < 0.01). Furthermore, the CNR of SR-DLR (10.53; IQR: 10.08, 11.69) was significantly superior to the StR-images without DLR (7.5; IQR: 6.4, 8.37), StR-images with DLR (8.73; IQR: 7.68, 9.0), HR-images without DLR (2.24; IQR: 1.43, 2.38), and HR-images with DLR (4.84; IQR: 2.99, 5.43) (p < 0.05). In the phantom study, artifacts induced by ZIP were scarcely observed when using SR-DLR. SR-DLR for hippocampal MRI potentially improves image quality beyond that of actual HR-images while reducing acquisition time.

PhotIQA: A photoacoustic image data set with image quality ratings

Anna Breger, Janek Gröhl, Clemens Karner, Thomas R Else, Ian Selby, Jonathan Weir-McCall, Carola-Bibiane Schönlieb

arxiv logopreprintJul 4 2025
Image quality assessment (IQA) is crucial in the evaluation stage of novel algorithms operating on images, including traditional and machine learning based methods. Due to the lack of available quality-rated medical images, most commonly used IQA methods employing reference images (i.e. full-reference IQA) have been developed and tested for natural images. Reported application inconsistencies arising when employing such measures for medical images are not surprising, as they rely on different properties than natural images. In photoacoustic imaging (PAI), especially, standard benchmarking approaches for assessing the quality of image reconstructions are lacking. PAI is a multi-physics imaging modality, in which two inverse problems have to be solved, which makes the application of IQA measures uniquely challenging due to both, acoustic and optical, artifacts. To support the development and testing of full- and no-reference IQA measures we assembled PhotIQA, a data set consisting of 1134 reconstructed photoacoustic (PA) images that were rated by 2 experts across five quality properties (overall quality, edge visibility, homogeneity, inclusion and background intensity), where the detailed rating enables usage beyond PAI. To allow full-reference assessment, highly characterised imaging test objects were used, providing a ground truth. Our baseline experiments show that HaarPSI$_{med}$ significantly outperforms SSIM in correlating with the quality ratings (SRCC: 0.83 vs. 0.62). The dataset is publicly available at https://doi.org/10.5281/zenodo.13325196.
Page 12 of 40393 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.