Sort by:
Page 109 of 1161159 results

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Almalki H, Khadidos AO, Alhebaishi N, Senan EM

pubmed logopapersMay 14 2025
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the brain cells, indicating the stage of disease progression. Artificial intelligence techniques analyze MRI with high accuracy and extract subtle features that are difficult to diagnose manually. In this study, a modern methodology was designed that combines the power of CNN models (ResNet101 and GoogLeNet) to extract local deep features and the power of Vision Transformer (ViT) models to extract global features and find relationships between image spots. First, the MRI images of the Open Access Imaging Studies Series (OASIS) dataset were improved by two filters: the adaptive median filter (AMF) and Laplacian filter. The ResNet101 and GoogLeNet models were modified to suit the feature extraction task and reduce computational cost. The ViT architecture was modified to reduce the computational cost while increasing the number of attention vertices to further discover global features and relationships between image patches. The enhanced images were fed into the proposed ViT-CNN methodology. The enhanced images were fed to the modified ResNet101 and GoogLeNet models to extract the deep feature maps with high accuracy. Deep feature maps were fed into the modified ViT model. The deep feature maps were partitioned into 32 feature maps using ResNet101 and 16 feature maps using GoogLeNet, both with a size of 64 features. The feature maps were encoded to recognize the spatial arrangement of the patch and preserve the relationship between patches, helping the self-attention layers distinguish between patches based on their positions. They were fed to the transformer encoder, which consisted of six blocks and multiple vertices to focus on different patterns or regions simultaneously. Finally, the MLP classification layers classify each image into one of four dataset classes. The improved ResNet101-ViT hybrid methodology outperformed the GoogLeNet-ViT hybrid methodology. ResNet101-ViT achieved 98.7% accuracy, 95.05% AUC, 96.45% precision, 99.68% sensitivity, and 97.78% specificity.

Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models

Jin Liu, Qing Lin, Zhuang Xiong, Shanshan Shan, Chunyi Liu, Min Li, Feng Liu, G. Bruce Pike, Hongfu Sun, Yang Gao

arxiv logopreprintMay 13 2025
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.

Fast cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration.

Wu J, Zhou S

pubmed logopapersMay 13 2025
Accurately and efficiently estimating the cortical thickness from magnetic resonance images (MRIs) is crucial for neuroscientific studies and clinical applications with various large-scale datasets. Diffeomorphic registration-based cortical thickness estimation (DiReCT) is a prominent traditional method of calculating such measures directly from original MRIs by applying diffeomorphic registration on segmented tissues. However, it suffers from prolonged computational time and limited reproducibility, impediments to its application in large-scale studies or real-time environments. This paper proposes a framework for cortical thickness estimation using deep learning-based anatomy segmentation and diffeomorphic registration. The framework begins by applying a convolutional neural network (CNN) segmentation model to the original image, generating a segmentation map that accurately delineates the cortical boundaries. Subsequently, a pair of distance maps generated from the segmentation map is injected into an unsupervised learning-based registration network for fast and diffeomorphic registration. A novel algorithm based on diffeomorphisms of different time points is proposed to calculate the final thickness map. We systematically evaluated and compared our method with surface-based measures from FreeSurfer on two distinct datasets. The experimental results demonstrated a superior performance of the proposed method, surpassing the performance of DiReCT and DL+DiReCT in terms of time efficiency and consistency with FreeSurfer. Our code and pre-trained models are publicly available at: https://github.com/wujiong-hub/DL-CTE.git.

Signal-based AI-driven software solution for automated quantification of metastatic bone disease and treatment response assessment using Whole-Body Diffusion-Weighted MRI (WB-DWI) biomarkers in Advanced Prostate Cancer

Antonio Candito, Matthew D Blackledge, Richard Holbrey, Nuria Porta, Ana Ribeiro, Fabio Zugni, Luca D'Erme, Francesca Castagnoli, Alina Dragan, Ricardo Donners, Christina Messiou, Nina Tunariu, Dow-Mu Koh

arxiv logopreprintMay 13 2025
We developed an AI-driven software solution to quantify metastatic bone disease from WB-DWI scans. Core technologies include: (i) a weakly-supervised Residual U-Net model generating a skeleton probability map to isolate bone; (ii) a statistical framework for WB-DWI intensity normalisation, obtaining a signal-normalised b=900s/mm^2 (b900) image; and (iii) a shallow convolutional neural network that processes outputs from (i) and (ii) to generate a mask of suspected bone lesions, characterised by higher b900 signal intensity due to restricted water diffusion. This mask is applied to the gADC map to extract TDV and gADC statistics. We tested the tool using expert-defined metastatic bone disease delineations on 66 datasets, assessed repeatability of imaging biomarkers (N=10), and compared software-based response assessment with a construct reference standard based on clinical, laboratory and imaging assessments (N=118). Dice score between manual and automated delineations was 0.6 for lesions within pelvis and spine, with an average surface distance of 2mm. Relative differences for log-transformed TDV (log-TDV) and median gADC were below 9% and 5%, respectively. Repeatability analysis showed coefficients of variation of 4.57% for log-TDV and 3.54% for median gADC, with intraclass correlation coefficients above 0.9. The software achieved 80.5% accuracy, 84.3% sensitivity, and 85.7% specificity in assessing response to treatment compared to the construct reference standard. Computation time generating a mask averaged 90 seconds per scan. Our software enables reproducible TDV and gADC quantification from WB-DWI scans for monitoring metastatic bone disease response, thus providing potentially useful measurements for clinical decision-making in APC patients.

AmygdalaGo-BOLT: an open and reliable AI tool to trace boundaries of human amygdala

Zhou, Q., Dong, B., Gao, P., Jintao, W., Xiao, J., Wang, W., Liang, P., Lin, D., Zuo, X.-N., He, H.

biorxiv logopreprintMay 13 2025
Each year, thousands of brain MRI scans are collected to study structural development in children and adolescents. However, the amygdala, a particularly small and complex structure, remains difficult to segment reliably, especially in developing populations where its volume is even smaller. To address this challenge, we developed AmygdalaGo-BOLT, a boundary-aware deep learning model tailored for human amygdala segmentation. It was trained and validated using 854 manually labeled scans from pediatric datasets, with independent samples used to ensure performance generalizability. The model integrates multiscale image features, spatial priors, and self-attention mechanisms within a compact encoder-decoder architecture to enhance boundary detection. Validation across multiple imaging centers and age groups shows that AmygdalaGo-BOLT closely matches expert manual labels, improves processing efficiency, and outperforms existing tools in accuracy. This enables robust and scalable analysis of amygdala morphology in developmental neuroimaging studies where manual tracing is impractical. To support open and reproducible science, we publicly release both the labeled datasets and the full source code.

An automated cascade framework for glioma prognosis via segmentation, multi-feature fusion and classification techniques.

Hamoud M, Chekima NEI, Hima A, Kholladi NH

pubmed logopapersMay 13 2025
Glioma is one of the most lethal types of brain tumors, accounting for approximately 33% of all diagnosed brain tumor cases. Accurate segmentation and classification are crucial for precise glioma characterization, emphasizing early detection of malignancy, effective treatment planning, and prevention of tumor progression. Magnetic Resonance Imaging (MRI) serves as a non-invasive imaging modality that allows detailed examination of gliomas without exposure to ionizing radiation. However, manual analysis of MRI scans is impractical, time-consuming, subjective, and requires specialized expertise from radiologists. To address this, computer-aided diagnosis (CAD) systems have greatly evolved as powerful tools to support neuro-oncologists in the brain cancer screening process. In this work, we present a glioma classification framework based on 3D multi-modal MRI segmentation using the CNN models SegResNet and Swin UNETR which incorporates transformer mechanisms for enhancing segmentation performance. MRI images undergo preprocessing with a Gaussian filter and skull stripping to improve tissue localization. Key textural features are then extracted from segmented tumor regions using Gabor Transform, Discrete Wavelet Transform (DWT), and deep features from ResNet50. These features are fused, normalized, and classified using a Support Vector Machine (SVM) to distinguish between Low-Grade Glioma (LGG) and High-Grade Glioma (HGG). Extensive experiments on benchmark datasets, including BRATS2020 and BRATS2023, demonstrate the effectiveness of the proposed approach. Our model achieved Dice scores of 0.815 for Tumor Core, 0.909 for Whole Tumor, and 0.829 for Enhancing Tumor. Concerning classification, the framework attained 97% accuracy, 94% precision, 96% recall, and a 95% F1-score. These results highlight the potential of the proposed framework to provide reliable support for radiologists in the early detection and classification of gliomas.

Deep Learning-accelerated MRI in Body and Chest.

Rajamohan N, Bagga B, Bansal B, Ginocchio L, Gupta A, Chandarana H

pubmed logopapersMay 13 2025
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.

New developments in imaging in ALS.

Kleinerova J, Querin G, Pradat PF, Siah WF, Bede P

pubmed logopapersMay 12 2025
Neuroimaging in ALS has contributed considerable academic insights in recent years demonstrating genotype-specific topological changes decades before phenoconversion and characterising longitudinal propagation patterns in specific phenotypes. It has elucidated the radiological underpinnings of specific clinical phenomena such as pseudobulbar affect, apathy, behavioural change, spasticity, and language deficits. Academic concepts such as sexual dimorphism, motor reserve, cognitive reserve, adaptive changes, connectivity-based propagation, pathological stages, and compensatory mechanisms have also been evaluated by imaging. The underpinnings of extra-motor manifestations such as cerebellar, sensory, extrapyramidal and cognitive symptoms have been studied by purpose-designed imaging protocols. Clustering approaches have been implemented to uncover radiologically distinct disease subtypes and machine-learning models have been piloted to accurately classify individual patients into relevant diagnostic, phenotypic, and prognostic categories. Prediction models have been developed for survival in symptomatic patients and phenoconversion in asymptomatic mutation carriers. A range of novel imaging modalities have been implemented and 7 Tesla MRI platforms are increasingly being used in ALS studies. Non-ALS MND conditions, such as PLS, SBMA, and SMA, are now also being increasingly studied by quantitative neuroimaging approaches. A unifying theme of recent imaging papers is the departure from describing focal brain changes to focusing on dynamic structural and functional connectivity alterations. Progressive cortico-cortical, cortico-basal, cortico-cerebellar, cortico-bulbar, and cortico-spinal disconnection has been consistently demonstrated by recent studies and recognised as the primary driver of clinical decline. These studies have led the reconceptualisation of ALS as a "network" or "circuitry disease".

Multi-Plane Vision Transformer for Hemorrhage Classification Using Axial and Sagittal MRI Data

Badhan Kumar Das, Gengyan Zhao, Boris Mailhe, Thomas J. Re, Dorin Comaniciu, Eli Gibson, Andreas Maier

arxiv logopreprintMay 12 2025
Identifying brain hemorrhages from magnetic resonance imaging (MRI) is a critical task for healthcare professionals. The diverse nature of MRI acquisitions with varying contrasts and orientation introduce complexity in identifying hemorrhage using neural networks. For acquisitions with varying orientations, traditional methods often involve resampling images to a fixed plane, which can lead to information loss. To address this, we propose a 3D multi-plane vision transformer (MP-ViT) for hemorrhage classification with varying orientation data. It employs two separate transformer encoders for axial and sagittal contrasts, using cross-attention to integrate information across orientations. MP-ViT also includes a modality indication vector to provide missing contrast information to the model. The effectiveness of the proposed model is demonstrated with extensive experiments on real world clinical dataset consists of 10,084 training, 1,289 validation and 1,496 test subjects. MP-ViT achieved substantial improvement in area under the curve (AUC), outperforming the vision transformer (ViT) by 5.5% and CNN-based architectures by 1.8%. These results highlight the potential of MP-ViT in improving performance for hemorrhage detection when different orientation contrasts are needed.

Preoperative prediction of malignant transformation in sinonasal inverted papilloma: a novel MRI-based deep learning approach.

Ding C, Wen B, Han Q, Hu N, Kang Y, Wang Y, Wang C, Zhang L, Xian J

pubmed logopapersMay 12 2025
To develop a novel MRI-based deep learning (DL) diagnostic model, utilizing multicenter large-sample data, for the preoperative differentiation of sinonasal inverted papilloma (SIP) from SIP-transformed squamous cell carcinoma (SIP-SCC). This study included 568 patients from four centers with confirmed SIP (n = 421) and SIP-SCC (n = 147). Deep learning models were built using T1WI, T2WI, and CE-T1WI. A combined model was constructed by integrating these features through an attention mechanism. The diagnostic performance of radiologists, both with and without the model's assistance, was compared. Model performance was evaluated through receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). The combined model demonstrated superior performance in differentiating SIP from SIP-SCC, achieving AUCs of 0.954, 0.897, and 0.859 in the training, internal validation, and external validation cohorts, respectively. It showed optimal accuracy, stability, and clinical benefit, as confirmed by Brier scores and calibration curves. The diagnostic performance of radiologists, especially for less experienced ones, was significantly improved with model assistance. The MRI-based deep learning model enhances the capability to predict malignant transformation of sinonasal inverted papilloma before surgery. By facilitating earlier diagnosis and promoting timely pathological examination or surgical intervention, this approach holds the potential to enhance patient prognosis. Questions Sinonasal inverted papilloma (SIP) is prone to malignant transformation locally, leading to poor prognosis; current diagnostic methods are invasive and inaccurate, necessitating effective preoperative differentiation. Findings The MRI-based deep learning model accurately diagnoses malignant transformations of SIP, enabling junior radiologists to achieve greater clinical benefits with the assistance of the model. Clinical relevance A novel MRI-based deep learning model enhances the capability of preoperative diagnosis of malignant transformation in sinonasal inverted papilloma, providing a non-invasive tool for personalized treatment planning.
Page 109 of 1161159 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.