Sort by:
Page 10 of 1161159 results

Predictive Modeling of Osteonecrosis of the Femoral Head Progression Using MobileNetV3_Large and Long Short-Term Memory Network: Novel Approach.

Kong G, Zhang Q, Liu D, Pan J, Liu K

pubmed logopapersAug 6 2025
The assessment of osteonecrosis of the femoral head (ONFH) often presents challenges in accuracy and efficiency. Traditional methods rely on imaging studies and clinical judgment, prompting the need for advanced approaches. This study aims to use deep learning algorithms to enhance disease assessment and prediction in ONFH, optimizing treatment strategies. The primary objective of this research is to analyze pathological images of ONFH using advanced deep learning algorithms to evaluate treatment response, vascular reconstruction, and disease progression. By identifying the most effective algorithm, this study seeks to equip clinicians with precise tools for disease assessment and prediction. Magnetic resonance imaging (MRI) data from 30 patients diagnosed with ONFH were collected, totaling 1200 slices, which included 675 slices with lesions and 225 normal slices. The dataset was divided into training (630 slices), validation (135 slices), and test (135 slices) sets. A total of 10 deep learning algorithms were tested for training and optimization, and MobileNetV3_Large was identified as the optimal model for subsequent analyses. This model was applied for quantifying vascular reconstruction, evaluating treatment responses, and assessing lesion progression. In addition, a long short-term memory (LSTM) model was integrated for the dynamic prediction of time-series data. The MobileNetV3_Large model demonstrated an accuracy of 96.5% (95% CI 95.1%-97.8%) and a recall of 94.8% (95% CI 93.2%-96.4%) in ONFH diagnosis, significantly outperforming DenseNet201 (87.3%; P<.05). Quantitative evaluation of treatment responses showed that vascularized bone grafting resulted in an average increase of 12.4 mm in vascular length (95% CI 11.2-13.6 mm; P<.01) and an increase of 2.7 in branch count (95% CI 2.3-3.1; P<.01) among the 30 patients. The model achieved an AUC of 0.92 (95% CI 0.90-0.94) for predicting lesion progression, outperforming traditional methods like ResNet50 (AUC=0.85; P<.01). Predictions were consistent with clinical observations in 92.5% of cases (24/26). The application of deep learning algorithms in examining treatment response, vascular reconstruction, and disease progression in ONFH presents notable advantages. This study offers clinicians a precise tool for disease assessment and highlights the significance of using advanced technological solutions in health care practice.

Deep learning-based radiomics does not improve residual cancer burden prediction post-chemotherapy in LIMA breast MRI trial.

Janse MHA, Janssen LM, Wolters-van der Ben EJM, Moman MR, Viergever MA, van Diest PJ, Gilhuijs KGA

pubmed logopapersAug 6 2025
This study aimed to evaluate the potential additional value of deep radiomics for assessing residual cancer burden (RCB) in locally advanced breast cancer, after neoadjuvant chemotherapy (NAC) but before surgery, compared to standard predictors: tumor volume and subtype. This retrospective study used a 105-patient single-institution training set and a 41-patient external test set from three institutions in the LIMA trial. DCE-MRI was performed before and after NAC, and RCB was determined post-surgery. Three networks (nnU-Net, Attention U-net and vector-quantized encoder-decoder) were trained for tumor segmentation. For each network, deep features were extracted from the bottleneck layer and used to train random forest regression models to predict RCB score. Models were compared to (1) a model trained on tumor volume and (2) a model combining tumor volume and subtype. The potential complementary performance of combining deep radiomics with a clinical-radiological model was assessed. From the predicted RCB score, three metrics were calculated: area under the curve (AUC) for categories RCB-0/RCB-I versus RCB-II/III, pathological complete response (pCR) versus non-pCR, and Spearman's correlation. Deep radiomics models had an AUC between 0.68-0.74 for pCR and 0.68-0.79 for RCB, while the volume-only model had an AUC of 0.74 and 0.70 for pCR and RCB, respectively. Spearman's correlation varied from 0.45-0.51 (deep radiomics) to 0.53 (combined model). No statistical difference between models was observed. Segmentation network-derived deep radiomics contain similar information to tumor volume and subtype for inferring pCR and RCB after NAC, but do not complement standard clinical predictors in the LIMA trial. Question It is unknown if and which deep radiomics approach is most suitable to extract relevant features to assess neoadjuvant chemotherapy response on breast MRI. Findings Radiomic features extracted from deep-learning networks yield similar results in predicting neoadjuvant chemotherapy response as tumor volume and subtype in the LIMA study. However, they do not provide complementary information. Clinical relevance For predicting response to neoadjuvant chemotherapy in breast cancer patients, tumor volume on MRI and subtype remain important predictors of treatment outcome; deep radiomics might be an alternative when determining tumor volume and/or subtype is not feasible.

Improving 3D Thin Vessel Segmentation in Brain TOF-MRA via a Dual-space Context-Aware Network.

Shan W, Li X, Wang X, Li Q, Wang Z

pubmed logopapersAug 6 2025
3D cerebrovascular segmentation poses a significant challenge, akin to locating a line within a vast 3D environment. This complexity can be substantially reduced by projecting the vessels onto a 2D plane, enabling easier segmentation. In this paper, we create a vessel-segmentation-friendly space using a clinical visualization technique called maximum intensity projection (MIP). Leveraging this, we propose a Dual-space Context-Aware Network (DCANet) for 3D vessel segmentation, designed to capture even the finest vessel structures accurately. DCANet begins by transforming a magnetic resonance angiography (MRA) volume into a 3D Regional-MIP volume, where each Regional-MIP slice is constructed by projecting adjacent MRA slices. This transformation highlights vessels as prominent continuous curves rather than the small circular or ellipsoidal cross-sections seen in MRA slices. DCANet encodes vessels separately in the MRA and the projected Regional-MIP spaces and introduces the Regional-MIP Image Fusion Block (MIFB) between these dual spaces to selectively integrate contextual features from Regional-MIP into MRA. Following dual-space encoding, DCANet employs a Dual-mask Spatial Guidance TransFormer (DSGFormer) decoder to focus on vessel regions while effectively excluding background areas, which reduces the learning burden and improves segmentation accuracy. We benchmark DCANet on four datasets: two public datasets, TubeTK and IXI-IOP, and two in-house datasets, Xiehe and IXI-HH. The results demonstrate that DCANet achieves superior performance, with improvements in average DSC values of at least 2.26%, 2.17%, 2.62%, and 2.58% for thin vessels, respectively. Codes are available at: https://github.com/shanwq/DCANet.

Automated Deep Learning-based Segmentation of the Dentate Nucleus Using Quantitative Susceptibility Mapping MRI.

Shiraishi DH, Saha S, Adanyeguh IM, Cocozza S, Corben LA, Deistung A, Delatycki MB, Dogan I, Gaetz W, Georgiou-Karistianis N, Graf S, Grisoli M, Henry PG, Jarola GM, Joers JM, Langkammer C, Lenglet C, Li J, Lobo CC, Lock EF, Lynch DR, Mareci TH, Martinez ARM, Monti S, Nigri A, Pandolfo M, Reetz K, Roberts TP, Romanzetti S, Rudko DA, Scaravilli A, Schulz JB, Subramony SH, Timmann D, França MC, Harding IH, Rezende TJR

pubmed logopapersAug 6 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) applied to brain MRI-based quantitative susceptibility mapping (QSM) images. Materials and Methods Brain QSM images from healthy controls and individuals with cerebellar ataxia or multiple sclerosis were collected from nine different datasets (2016-2023) worldwide for this retrospective study (ClinicalTrials.gov Identifier: NCT04349514). Manual delineation of the DN was performed by experienced raters. Automated segmentation performance was evaluated against manual reference segmentations following training with several DL architectures. A two-step approach was used, consisting of a localization model followed by DN segmentation. Performance metrics included intraclass correlation coefficient (ICC), Dice score, and Pearson correlation coefficient. Results The training and testing datasets comprised 328 individuals (age range, 11-64 years; 171 female), including 141 healthy individuals and 187 with cerebellar ataxia or multiple sclerosis. The manual tracing protocol produced reference standards with high intrarater (average ICC 0.91) and interrater reliability (average ICC 0.78). Initial DL architecture exploration indicated that the nnU-Net framework performed best. The two-step localization plus segmentation pipeline achieved a Dice score of 0.90 ± 0.03 and 0.89 ± 0.04 for left and right DN segmentation, respectively. In external testing, the proposed algorithm outperformed the current leading automated tool (mean Dice scores for left and right DN: 0.86 ± 0.04 vs 0.57 ± 0.22, <i>P</i> < .001; 0.84 ± 0.07 vs 0.58 ± 0.24, <i>P</i> < .001). The model demonstrated generalizability across datasets unseen during the training step, with automated segmentations showing high correlation with manual annotations (left DN: r = 0.74; <i>P</i> < .001; right DN: r = 0.48; <i>P</i> = .03). Conclusion The proposed model accurately and efficiently segmented the DN from brain QSM images. The model is publicly available (https://github.com/art2mri/DentateSeg). ©RSNA, 2025.

Pyramidal attention-based T network for brain tumor classification: a comprehensive analysis of transfer learning approaches for clinically reliable and reliable AI hybrid approaches.

Banerjee T, Chhabra P, Kumar M, Kumar A, Abhishek K, Shah MA

pubmed logopapersAug 6 2025
Brain tumors are a significant challenge to human health as they impair the proper functioning of the brain and the general quality of life, thus requiring clinical intervention through early and accurate diagnosis. Although current state-of-the-art deep learning methods have achieved remarkable progress, there is still a gap in the representation learning of tumor-specific spatial characteristics and the robustness of the classification model on heterogeneous data. In this paper, we introduce a novel Pyramidal Attention-Based bi-partitioned T Network (PABT-Net) that combines the hierarchical pyramidal attention mechanism and T-block based bi-partitioned feature extraction, and a self-convolutional dilated neural classifier as the final task. Such an architecture increases the discriminability of the space and decreases the false forecasting by adaptively focusing on informative areas in brain MRI images. The model was thoroughly tested on three benchmark datasets, Figshare Brain Tumor Dataset, Sartaj Brain MRI Dataset, and Br35H Brain Tumor Dataset, containing 7023 images labeled in four tumor classes: glioma, meningioma, no tumor, and pituitary tumor. It attained an overall classification accuracy of 99.12%, a mean cross-validation accuracy of 98.77%, a Jaccard similarity index of 0.986, and a Cohen's Kappa value of 0.987, indicating superb generalization and clinical stability. The model's effectiveness is also confirmed by tumor-wise classification accuracies: 96.75%, 98.46%, and 99.57% in glioma, meningioma, and pituitary tumors, respectively. Comparative experiments with the state-of-the-art models, including VGG19, MobileNet, and NASNet, were carried out, and ablation studies proved the effectiveness of NASNet incorporation. To capture more prominent spatial-temporal patterns, we investigated hybrid networks, including NASNet with ANN, CNN, LSTM, and CNN-LSTM variants. The framework implements a strict nine-fold cross-validation procedure. It integrates a broad range of measures in its evaluation, including precision, recall, specificity, F1-score, AUC, confusion matrices, and the ROC analysis, consistent across distributions. In general, the PABT-Net model has high potential to be a clinically deployable, interpretable, state-of-the-art automated brain tumor classification model.

Dynamic neural network modulation associated with rumination in major depressive disorder: a prospective observational comparative analysis of cognitive behavioral therapy and pharmacotherapy.

Katayama N, Shinagawa K, Hirano J, Kobayashi Y, Nakagawa A, Umeda S, Kamiya K, Tajima M, Amano M, Nogami W, Ihara S, Noda S, Terasawa Y, Kikuchi T, Mimura M, Uchida H

pubmed logopapersAug 6 2025
Cognitive behavioral therapy (CBT) and pharmacotherapy are primary treatments for major depressive disorder (MDD). However, their differential effects on the neural networks associated with rumination, or repetitive negative thinking, remain poorly understood. This study included 135 participants, whose rumination severity was measured using the rumination response scale (RRS) and whose resting brain activity was measured using functional magnetic resonance imaging (fMRI) at baseline and after 16 weeks. MDD patients received either standard CBT based on Beck's manual (n = 28) or pharmacotherapy (n = 32). Using a hidden Markov model, we observed that MDD patients exhibited increased activity in the default mode network (DMN) and decreased occupancies in the sensorimotor and central executive networks (CEN). The DMN occurrence rate correlated positively with rumination severity. CBT, while not specifically designed to target rumination, reduced DMN occurrence rate and facilitated transitions toward a CEN-dominant brain state as part of broader therapeutic effects. Pharmacotherapy shifted DMN activity to the posterior region of the brain. These findings suggest that CBT and pharmacotherapy modulate brain network dynamics related to rumination through distinct therapeutic pathways.

Altered gray matter morphometry in psychogenic erectile dysfunction patients: A Surface-based morphometry study.

Tian Z, Ma Z, Dou B, Huang X, Li G, Chang D, Yin T, Zhang P

pubmed logopapersAug 6 2025
Psychogenic erectile dysfunction (pED) is a prevalent male sexual dysfunction lacking organic etiology. Endeavors have been made in previous studies to disclose the brain pathological mechanisms of pED. However, the cortical morphological characteristics in pED patients remained largely unknown. This study enrolled 50 pED patients and 50 healthy controls (HC). The surface-based morphometry (SBM) analysis was conducted, and the between-group comparisons of the four cortical morphological parameters, including the cortical thickness, sulcus depth, gyrification index, and fractal dimension, were performed to investigate the cortical morphological alterations in pED patients, followed by correlation analysis between clinical data and SBM metrics. Furthermore, a classifier was developed based on a support vector classification algorithm and cortical morphological features to explore the feasibility of discriminating between pED patients and HC at an individual level. The results demonstrated that pED patients manifested consistent alteration in cortical morphology cross metrics in the orbitofrontal cortex, anterior and middle cingulate cortex, dorsolateral prefrontal cortex, and precentral gyrus, which were significantly correlated with the clinical symptoms in pED patients. Additionally, the classifier built based on 11 cortical morphological features achieved an accuracy of 82% in discriminating pED patients from HC. The current study provided new evidence of cortical morphological aberrations in pED patients, which deepened our understanding of the central pathology pattern of pED and was expected to facilitate the objective diagnosis of pED and the development of neuromodulation techniques targeting the alterations above.

DDTracking: A Deep Generative Framework for Diffusion MRI Tractography with Streamline Local-Global Spatiotemporal Modeling

Yijie Li, Wei Zhang, Xi Zhu, Ye Wu, Yogesh Rathi, Lauren J. O'Donnell, Fan Zhang

arxiv logopreprintAug 6 2025
This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git

A Comprehensive Framework for Uncertainty Quantification of Voxel-wise Supervised Models in IVIM MRI

Nicola Casali, Alessandro Brusaferri, Giuseppe Baselli, Stefano Fumagalli, Edoardo Micotti, Gianluigi Forloni, Riaz Hussein, Giovanna Rizzo, Alfonso Mastropietro

arxiv logopreprintAug 6 2025
Accurate estimation of intravoxel incoherent motion (IVIM) parameters from diffusion-weighted MRI remains challenging due to the ill-posed nature of the inverse problem and high sensitivity to noise, particularly in the perfusion compartment. In this work, we propose a probabilistic deep learning framework based on Deep Ensembles (DE) of Mixture Density Networks (MDNs), enabling estimation of total predictive uncertainty and decomposition into aleatoric (AU) and epistemic (EU) components. The method was benchmarked against non probabilistic neural networks, a Bayesian fitting approach and a probabilistic network with single Gaussian parametrization. Supervised training was performed on synthetic data, and evaluation was conducted on both simulated and two in vivo datasets. The reliability of the quantified uncertainties was assessed using calibration curves, output distribution sharpness, and the Continuous Ranked Probability Score (CRPS). MDNs produced more calibrated and sharper predictive distributions for the D and f parameters, although slight overconfidence was observed in D*. The Robust Coefficient of Variation (RCV) indicated smoother in vivo estimates for D* with MDNs compared to Gaussian model. Despite the training data covering the expected physiological range, elevated EU in vivo suggests a mismatch with real acquisition conditions, highlighting the importance of incorporating EU, which was allowed by DE. Overall, we present a comprehensive framework for IVIM fitting with uncertainty quantification, which enables the identification and interpretation of unreliable estimates. The proposed approach can also be adopted for fitting other physical models through appropriate architectural and simulation adjustments.

Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation

Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro

arxiv logopreprintAug 6 2025
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas
Page 10 of 1161159 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.