Sort by:
Page 1 of 654 results
Next

Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework

Nanaka Hosokawa, Ryo Takahashi, Tomoya Kitano, Yukihiro Iida, Chisako Muramatsu, Tatsuro Hayashi, Yuta Seino, Xiangrong Zhou, Takeshi Hara, Akitoshi Katsumata, Hiroshi Fujita

arxiv logopreprintOct 2 2025
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.

Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework

Nanaka Hosokawa, Ryo Takahashi, Tomoya Kitano, Yukihiro Iida, Chisako Muramatsu, Tatsuro Hayashi, Yuta Seino, Xiangrong Zhou, Takeshi Hara, Akitoshi Katsumata, Hiroshi Fujita

arxiv logopreprintOct 2 2025
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.

Automated Structured Radiology Report Generation with Rich Clinical Context

Seongjae Kang, Dong Bok Lee, Juho Jung, Dongseop Kim, Won Hwa Kim, Sunghoon Joo

arxiv logopreprintOct 1 2025
Automated structured radiology report generation (SRRG) from chest X-ray images offers significant potential to reduce workload of radiologists by generating reports in structured formats that ensure clarity, consistency, and adherence to clinical reporting standards. While radiologists effectively utilize available clinical contexts in their diagnostic reasoning, existing SRRG systems overlook these essential elements. This fundamental gap leads to critical problems including temporal hallucinations when referencing non-existent clinical contexts. To address these limitations, we propose contextualized SRRG (C-SRRG) that comprehensively incorporates rich clinical context for SRRG. We curate C-SRRG dataset by integrating comprehensive clinical context encompassing 1) multi-view X-ray images, 2) clinical indication, 3) imaging techniques, and 4) prior studies with corresponding comparisons based on patient histories. Through extensive benchmarking with state-of-the-art multimodal large language models, we demonstrate that incorporating clinical context with the proposed C-SRRG significantly improves report generation quality. We publicly release dataset, code, and checkpoints to facilitate future research for clinically-aligned automated RRG at https://github.com/vuno/contextualized-srrg.

Self-Supervised Anatomical Consistency Learning for Vision-Grounded Medical Report Generation

Longzhen Yang, Zhangkai Ni, Ying Wen, Yihang Liu, Lianghua He, Heng Tao Shen

arxiv logopreprintSep 30 2025
Vision-grounded medical report generation aims to produce clinically accurate descriptions of medical images, anchored in explicit visual evidence to improve interpretability and facilitate integration into clinical workflows. However, existing methods often rely on separately trained detection modules that require extensive expert annotations, introducing high labeling costs and limiting generalizability due to pathology distribution bias across datasets. To address these challenges, we propose Self-Supervised Anatomical Consistency Learning (SS-ACL) -- a novel and annotation-free framework that aligns generated reports with corresponding anatomical regions using simple textual prompts. SS-ACL constructs a hierarchical anatomical graph inspired by the invariant top-down inclusion structure of human anatomy, organizing entities by spatial location. It recursively reconstructs fine-grained anatomical regions to enforce intra-sample spatial alignment, inherently guiding attention maps toward visually relevant areas prompted by text. To further enhance inter-sample semantic alignment for abnormality recognition, SS-ACL introduces a region-level contrastive learning based on anatomical consistency. These aligned embeddings serve as priors for report generation, enabling attention maps to provide interpretable visual evidence. Extensive experiments demonstrate that SS-ACL, without relying on expert annotations, (i) generates accurate and visually grounded reports -- outperforming state-of-the-art methods by 10\% in lexical accuracy and 25\% in clinical efficacy, and (ii) achieves competitive performance on various downstream visual tasks, surpassing current leading visual foundation models by 8\% in zero-shot visual grounding.

Toward a Vision-Language Foundation Model for Medical Data: Multimodal Dataset and Benchmarks for Vietnamese PET/CT Report Generation

Huu Tien Nguyen, Dac Thai Nguyen, The Minh Duc Nguyen, Trung Thanh Nguyen, Thao Nguyen Truong, Huy Hieu Pham, Johan Barthelemy, Minh Quan Tran, Thanh Tam Nguyen, Quoc Viet Hung Nguyen, Quynh Anh Chau, Hong Son Mai, Thanh Trung Nguyen, Phi Le Nguyen

arxiv logopreprintSep 29 2025
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset comprising 1,567,062 paired CT-PET images and corresponding 2,757 full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks, including medical report generation and visual question answering. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, particularly in low-resource languages, and improving their clinical relevance in Vietnamese healthcare.

Evaluating the Accuracy and Efficiency of AI-Generated Radiology Reports Based on Positive Findings-A Qualitative Assessment of AI in Radiology.

Rajmohamed RF, Chapala S, Shazahan MA, Wali P, Botchu R

pubmed logopapersSep 26 2025
With increasing imaging demands, radiologists face growing workload pressures, often resulting in delays and reduced diagnostic efficiency. Recent advances in artificial intelligence (AI) have introduced tools for automated report generation, particularly in simpler imaging modalities, such as X-rays. However, limited research has assessed AI performance in complex studies such as MRI and CT scans, where report accuracy and clinical interpretation are critical. To evaluate the performance of a semi-automated AI-based reporting platform in generating radiology reports for complex imaging studies, and to compare its accuracy, efficiency, and user confidence with the traditional dictation method. This study involved 100 imaging cases, including MRI knee (n=21), MRI lumbar spine (n=30), CT head (n=23), and CT Abdomen and Pelvis (n=26). Consultant musculoskeletal radiologists reported each case using both traditional dictation and the AI platform. The radiologist first identified and entered the key positive findings, based on which the AI system generated a full draft report. Reporting time was recorded, and both methods were evaluated on accuracy, user confidence, and overall reporting experience (rated on a scale of 1-5). Statistical analysis was conducted using two-tailed t-tests and 95% confidence intervals. AI-generated reports demonstrated significantly improved performance across all parameters. The mean reporting time reduced from 6.1 to 3.43 min (p<0.0001) with AI-assisted report generation. Accuracy improved from 3.81 to 4.65 (p<0.0001), confidence ratings increased from 3.91 to 4.67 (p<0.0001), and overall reporting experience favored using the AI platform for generating radiology reports (mean 4.7 vs. 3.69, p<0.0001). Minor formatting errors and occasional anatomical misinterpretations were observed in AI-generated reports, but could be easily corrected by the radiologist during review. The AI-assisted reporting platform significantly improved efficiency and radiologist confidence without compromising accuracy. Although the tool performs well when provided with key clinical findings, it still requires expert oversight, especially in anatomically complex reporting. These findings support the use of AI as a supportive tool in radiology practice, with a focus on data integrity, consistency, and human validation.

Radiologist Interaction with AI-Generated Preliminary Reports: A Longitudinal Multi-Reader Study.

Hong EK, Suh CH, Nukala M, Esfahani A, Licaros A, Madan R, Hunsaker A, Hammer M

pubmed logopapersSep 20 2025
To investigate the integration of multimodal AI-generated reports into radiology workflow over time, focusing on their impact on efficiency, acceptability, and report quality. A multicase, multireader study involved 756 publicly available chest radiographs interpreted by five radiologists using preliminary reports generated by a radiology-specific multimodal AI model, divided into seven sequential batches of 108 radiographs each. Two thoracic radiologists assessed the final reports using RADPEER criteria for agreement and 5-point Likert scale for quality. Reading times, rate of acceptance without modification, agreement, and quality scores were measured, with statistical analyses evaluating trends across seven sequential batches. Radiologists' reading times for chest radiographs decreased from 25.8 seconds in Batch 1 to 19.3 seconds in Batch 7 (p < .001). Acceptability increased from 54.6% to 60.2% (p < .001), with normal chest radiographs demonstrating high rates (68.9%) compared to abnormal chest radiographs (52.6%; p < .001). Median agreement and quality scores remained stable for normal chest radiographs but varied significantly for abnormal chest radiographs (ps < .05). The introduction of AI-generated reports improved efficiency of chest radiograph interpretation, acceptability increased over time. However, agreement and quality scores showed variability, particularly in abnormal cases, emphasizing the need for oversight in the interpretation of complex chest radiographs.

MPCM-RRG: Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation.

Yu Y, Huang G, Tan Z, Shi J, Li M, Pun CM, Zheng F, Ma S, Wang S, He L

pubmed logopapersSep 17 2025
The task of medical report generation involves automatically creating descriptive text reports from medical images, with the aim of alleviating the workload of physicians and enhancing diagnostic efficiency. However, although many existing medical report generation models based on the Transformer framework consider structural information in medical images, they ignore the interference of confounding factors on these structures, which limits the model's ability to effectively capture rich and critical lesion information. Furthermore, these models often struggle to address the significant imbalance between normal and abnormal content in actual reports, leading to challenges in accurately describing abnormalities. To address these limitations, we propose the Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation Model (MPCM-RRG). This model consists of three key components: the Visual Causal Prompting Module (VCP), the Textual Prompt-Guided Feature Enhancement Module (TPGF), and the Visual-Textual Semantic Consistency Module (VTSC). The VCP module uses chest X-ray masks as visual prompts and incorporates causal inference principles to help the model minimize the influence of irrelevant regions. Through causal intervention, the model can learn the causal relationships between the pathological regions in the image and the corresponding findings described in the report. The TPGF module tackles the imbalance between abnormal and normal text by integrating detailed textual prompts, which also guide the model to focus on lesion areas using a multi-head attention mechanism. The VTSC module promotes alignment between the visual and textual representations through contrastive consistency loss, fostering greater interaction and collaboration between the visual and textual prompts. Experimental results demonstrate that MPCM-RRG outperforms other methods on the IU X-ray and MIMIC-CXR datasets, highlighting its effectiveness in generating high-quality medical reports.

SGRRG: Leveraging radiology scene graphs for improved and abnormality-aware radiology report generation.

Wang J, Zhu L, Bhalerao A, He Y

pubmed logopapersSep 15 2025
Radiology report generation (RRG) methods often lack sufficient medical knowledge to produce clinically accurate reports. A scene graph provides comprehensive information for describing objects within an image. However, automatically generated radiology scene graphs (RSG) may contain noise annotations and highly overlapping regions, posing challenges in utilizing RSG to enhance RRG. To this end, we propose Scene Graph aided RRG (SGRRG), a framework that leverages an automatically generated RSG and copes with noisy supervision problems in the RSG with a transformer-based module, effectively distilling medical knowledge in an end-to-end manner. SGRRG is composed of a dedicated scene graph encoder responsible for translating the radiography into a RSG, and a scene graph-aided decoder that takes advantage of both patch-level and region-level visual information and mitigates the noisy annotation problem in the RSG. The incorporation of both patch-level and region-level features, alongside the integration of the essential RSG construction modules, enhances our framework's flexibility and robustness, enabling it to readily exploit prior advanced RRG techniques. A fine-grained, sentence-level attention method is designed to better distill the RSG information. Additionally, we introduce two proxy tasks to enhance the model's ability to produce clinically accurate reports. Extensive experiments demonstrate that SGRRG outperforms previous state-of-the-art methods in report generation and can better capture abnormal findings. Code is available at https://github.com/Markin-Wang/SGRRG.

Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis

Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H. Ai, Lun M. Wong, Hao Tang, Kuo Feng Hung

arxiv logopreprintSep 11 2025
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.
Page 1 of 654 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.