Sort by:
Page 59 of 84834 results

Rad-Path Correlation of Deep Learning Models for Prostate Cancer Detection on MRI

Verde, A. S. C., de Almeida, J. G., Mendes, F., Pereira, M., Lopes, R., Brito, M. J., Urbano, M., Correia, P. S., Gaivao, A. M., Firpo-Betancourt, A., Fonseca, J., Matos, C., Regge, D., Marias, K., Tsiknakis, M., ProCAncer-I Consortium,, Conceicao, R. C., Papanikolaou, N.

medrxiv logopreprintJun 4 2025
While Deep Learning (DL) models trained on Magnetic Resonance Imaging (MRI) have shown promise for prostate cancer detection, their lack of direct biological validation often undermines radiologists trust and hinders clinical adoption. Radiologic-histopathologic (rad-path) correlation has the potential to validate MRI-based lesion detection using digital histopathology. This study uses automated and manually annotated digital histopathology slides as a standard of reference to evaluate the spatial extent of lesion annotations derived from both radiologist interpretations and DL models previously trained on prostate bi-parametric MRI (bp-MRI). 117 histopathology slides were used as reference. Prospective patients with clinically significant prostate cancer performed a bp-MRI examination before undergoing a robotic radical prostatectomy, and each prostate specimen was sliced using a 3D-printed patient-specific mold to ensure a direct comparison between pre-operative imaging and histopathology slides. The histopathology slides and their corresponding T2-weighted MRI images were co-registered. We trained DL models for cancer detection on large retrospective datasets of T2-w MRI only, bp-MRI and histopathology images and did inference in a prospective patient cohort. We evaluated the spatial extent between detected lesions and between detected lesions and the histopathological and radiological ground-truth, using the Dice similarity coefficient (DSC). The DL models trained on digital histopathology tiles and MRI images demonstrated promising capabilities in lesion detection. A low overlap was observed between the lesion detection masks generated by the histopathology and bp-MRI models, with a DSC = 0.10. However, the overlap was equivalent (DSC = 0.08) between radiologist annotations and histopathology ground truth. A rad-path correlation pipeline was established in a prospective patient cohort with prostate cancer undergoing surgery. The correlation between rad-path DL models was low but comparable to the overlap between annotations. While DL models show promise in prostate cancer detection, challenges remain in integrating MRI-based predictions with histopathological findings.

An Unsupervised XAI Framework for Dementia Detection with Context Enrichment

Singh, D., Brima, Y., Levin, F., Becker, M., Hiller, B., Hermann, A., Villar-Munoz, I., Beichert, L., Bernhardt, A., Buerger, K., Butryn, M., Dechent, P., Duezel, E., Ewers, M., Fliessbach, K., D. Freiesleben, S., Glanz, W., Hetzer, S., Janowitz, D., Goerss, D., Kilimann, I., Kimmich, O., Laske, C., Levin, J., Lohse, A., Luesebrink, F., Munk, M., Perneczky, R., Peters, O., Preis, L., Priller, J., Prudlo, J., Prychynenko, D., Rauchmann, B.-S., Rostamzadeh, A., Roy-Kluth, N., Scheffler, K., Schneider, A., Droste zu Senden, L., H. Schott, B., Spottke, A., Synofzik, M., Wiltfang, J., Jessen, F., W

medrxiv logopreprintJun 4 2025
IntroductionExplainable Artificial Intelligence (XAI) methods enhance the diagnostic efficiency of clinical decision support systems by making the predictions of a convolutional neural networks (CNN) on brain imaging more transparent and trustworthy. However, their clinical adoption is limited due to limited validation of the explanation quality. Our study introduces a framework that evaluates XAI methods by integrating neuroanatomical morphological features with CNN-generated relevance maps for disease classification. MethodsWe trained a CNN using brain MRI scans from six cohorts: ADNI, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD (N=3253), including participants that were cognitively normal, with amnestic mild cognitive impairment, dementia due to Alzheimers disease and frontotemporal dementia. Clustering analysis benchmarked different explanation space configurations by using morphological features as proxy-ground truth. We implemented three post-hoc explanations methods: i) by simplifying model decisions, ii) explanation-by-example, and iii) textual explanations. A qualitative evaluation by clinicians (N=6) was performed to assess their clinical validity. ResultsClustering performance improved in morphology enriched explanation spaces, improving both homogeneity and completeness of the clusters. Post hoc explanations by model simplification largely delineated converters and stable participants, while explanation-by-example presented possible cognition trajectories. Textual explanations gave rule-based summarization of pathological findings. Clinicians qualitative evaluation highlighted challenges and opportunities of XAI for different clinical applications. ConclusionOur study refines XAI explanation spaces and applies various approaches for generating explanations. Within the context of AI-based decision support system in dementia research we found the explanations methods to be promising towards enhancing diagnostic efficiency, backed up by the clinical assessments.

Guiding Registration with Emergent Similarity from Pre-Trained Diffusion Models

Nurislam Tursynbek, Hastings Greer, Basar Demir, Marc Niethammer

arxiv logopreprintJun 3 2025
Diffusion models, while trained for image generation, have emerged as powerful foundational feature extractors for downstream tasks. We find that off-the-shelf diffusion models, trained exclusively to generate natural RGB images, can identify semantically meaningful correspondences in medical images. Building on this observation, we propose to leverage diffusion model features as a similarity measure to guide deformable image registration networks. We show that common intensity-based similarity losses often fail in challenging scenarios, such as when certain anatomies are visible in one image but absent in another, leading to anatomically inaccurate alignments. In contrast, our method identifies true semantic correspondences, aligning meaningful structures while disregarding those not present across images. We demonstrate superior performance of our approach on two tasks: multimodal 2D registration (DXA to X-Ray) and monomodal 3D registration (brain-extracted to non-brain-extracted MRI). Code: https://github.com/uncbiag/dgir

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

Co-Evidential Fusion with Information Volume for Medical Image Segmentation

Yuanpeng He, Lijian Li, Tianxiang Zhan, Chi-Man Pun, Wenpin Jiao, Zhi Jin

arxiv logopreprintJun 3 2025
Although existing semi-supervised image segmentation methods have achieved good performance, they cannot effectively utilize multiple sources of voxel-level uncertainty for targeted learning. Therefore, we propose two main improvements. First, we introduce a novel pignistic co-evidential fusion strategy using generalized evidential deep learning, extended by traditional D-S evidence theory, to obtain a more precise uncertainty measure for each voxel in medical samples. This assists the model in learning mixed labeled information and establishing semantic associations between labeled and unlabeled data. Second, we introduce the concept of information volume of mass function (IVUM) to evaluate the constructed evidence, implementing two evidential learning schemes. One optimizes evidential deep learning by combining the information volume of the mass function with original uncertainty measures. The other integrates the learning pattern based on the co-evidential fusion strategy, using IVUM to design a new optimization objective. Experiments on four datasets demonstrate the competitive performance of our method.

Multi-modal brain MRI synthesis based on SwinUNETR

Haowen Pang, Weiyan Guo, Chuyang Ye

arxiv logopreprintJun 3 2025
Multi-modal brain magnetic resonance imaging (MRI) plays a crucial role in clinical diagnostics by providing complementary information across different imaging modalities. However, a common challenge in clinical practice is missing MRI modalities. In this paper, we apply SwinUNETR to the synthesize of missing modalities in brain MRI. SwinUNETR is a novel neural network architecture designed for medical image analysis, integrating the strengths of Swin Transformer and convolutional neural networks (CNNs). The Swin Transformer, a variant of the Vision Transformer (ViT), incorporates hierarchical feature extraction and window-based self-attention mechanisms, enabling it to capture both local and global contextual information effectively. By combining the Swin Transformer with CNNs, SwinUNETR merges global context awareness with detailed spatial resolution. This hybrid approach addresses the challenges posed by the varying modality characteristics and complex brain structures, facilitating the generation of accurate and realistic synthetic images. We evaluate the performance of SwinUNETR on brain MRI datasets and demonstrate its superior capability in generating clinically valuable images. Our results show significant improvements in image quality, anatomical consistency, and diagnostic value.

Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning

Negin Baghbanzadeh, Sajad Ashkezari, Elham Dolatabadi, Arash Afkanpour

arxiv logopreprintJun 3 2025
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.

petBrain: A New Pipeline for Amyloid, Tau Tangles and Neurodegeneration Quantification Using PET and MRI

Pierrick Coupé, Boris Mansencal, Floréal Morandat, Sergio Morell-Ortega, Nicolas Villain, Jose V. Manjón, Vincent Planche

arxiv logopreprintJun 3 2025
INTRODUCTION: Quantification of amyloid plaques (A), neurofibrillary tangles (T2), and neurodegeneration (N) using PET and MRI is critical for Alzheimer's disease (AD) diagnosis and prognosis. Existing pipelines face limitations regarding processing time, variability in tracer types, and challenges in multimodal integration. METHODS: We developed petBrain, a novel end-to-end processing pipeline for amyloid-PET, tau-PET, and structural MRI. It leverages deep learning-based segmentation, standardized biomarker quantification (Centiloid, CenTauR, HAVAs), and simultaneous estimation of A, T2, and N biomarkers. The pipeline is implemented as a web-based platform, requiring no local computational infrastructure or specialized software knowledge. RESULTS: petBrain provides reliable and rapid biomarker quantification, with results comparable to existing pipelines for A and T2. It shows strong concordance with data processed in ADNI databases. The staging and quantification of A/T2/N by petBrain demonstrated good agreement with CSF/plasma biomarkers, clinical status, and cognitive performance. DISCUSSION: petBrain represents a powerful and openly accessible platform for standardized AD biomarker analysis, facilitating applications in clinical research.

Deep Learning-Based Opportunistic CT Osteoporosis Screening and Establishment of Normative Values

Westerhoff, M., Gyftopoulos, S., Dane, B., Vega, E., Murdock, D., Lindow, N., Herter, F., Bousabarah, K., Recht, M. P., Bredella, M. A.

medrxiv logopreprintJun 3 2025
BackgroundOsteoporosis is underdiagnosed and undertreated prompting the exploration of opportunistic screening using CT and artificial intelligence (AI). PurposeTo develop a reproducible deep learning-based convolutional neural network to automatically place a 3D region of interest (ROI) in trabecular bone, develop a correction method to normalize attenuation across different CT protocols or and scanner models, and to establish thresholds for osteoporosis in a large diverse population. MethodsA deep learning-based method was developed to automatically quantify trabecular attenuation using a 3D ROI of the thoracic and lumbar spine on chest, abdomen, or spine CTs, adjusted for different tube voltages and scanner models. Normative values, thresholds for osteoporosis of trabecular attenuation of the spine were established across a diverse population, stratified by age, sex, race, and ethnicity using reported prevalence of osteoporosis by the WHO. Results538,946 CT examinations from 283,499 patients (mean age 65 years{+/-}15, 51.2% women and 55.5% White), performed on 50 scanner models using six different tube voltages were analyzed. Hounsfield Units at 80 kVp versus 120 kVp differed by 23%, and different scanner models resulted in differences of values by < 10%. Automated ROI placement of 1496 vertebra was validated by manual radiologist review, demonstrating >99% agreement. Mean trabecular attenuation was higher in young women (<50 years) than young men (p<.001) and decreased with age, with a steeper decline in postmenopausal women. In patients older than 50 years, trabecular attention was higher in males than females (p<.001). Trabecular attenuation was highest in Blacks, followed by Asians and lowest in Whites (p<.001). The threshold for L1 in diagnosing osteoporosis was 80 HU. ConclusionDeep learning-based automated opportunistic osteoporosis screening can identify patients with low bone mineral density that undergo CT scans for clinical purposes on different scanners and protocols. Key Results 3 main results/conclusionsO_LIIn a study of 538,946 CT examinations performed in 283,499 patients using different scanner models and imaging protocols, an automated deep learning-based convolutional neural network was able to accurately place a three-dimensional regions of interest within thoracic and lumbar vertebra to measure trabecular attenuation. C_LIO_LITube voltage had a larger influence on attenuation values (23%) than scanner model (<10%). C_LIO_LIA threshold of 80 HU was identified for L1 to diagnose osteoporosis using an automated three-dimensional region of interest. C_LI

Inferring single-cell spatial gene expression with tissue morphology via explainable deep learning

Zhao, Y., Alizadeh, E., Taha, H. B., Liu, Y., Xu, M., Mahoney, J. M., Li, S.

biorxiv logopreprintJun 2 2025
Deep learning models trained with spatial omics data uncover complex patterns and relationships among cells, genes, and proteins in a high-dimensional space. State-of-the-art in silico spatial multi-cell gene expression methods using histological images of tissue stained with hematoxylin and eosin (H&E) allow us to characterize cellular heterogeneity. We developed a vision transformer (ViT) framework to map histological signatures to spatial single-cell transcriptomic signatures, named SPiRiT. SPiRiT predicts single-cell spatial gene expression using the matched H&E image tiles of human breast cancer and whole mouse pup, evaluated by Xenium (10x Genomics) datasets. Importantly, SPiRiT incorporates rigorous strategies to ensure reproducibility and robustness of predictions and provides trustworthy interpretation through attention-based model explainability. SPiRiT model interpretation revealed the areas, and attention details it uses to predict gene expressions like marker genes in invasive cancer cells. In an apple-to-apple comparison with ST-Net, SPiRiT improved the predictive accuracy by 40%. These gene predictions and expression levels were highly consistent with the tumor region annotation. In summary, SPiRiT highlights the feasibility to infer spatial single-cell gene expression using tissue morphology in multiple-species.
Page 59 of 84834 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.