Sort by:
Page 51 of 1091083 results

Emerging Frameworks for Objective Task-based Evaluation of Quantitative Medical Imaging Methods

Yan Liu, Huitian Xia, Nancy A. Obuchowski, Richard Laforest, Arman Rahmim, Barry A. Siegel, Abhinav K. Jha

arxiv logopreprintJul 7 2025
Quantitative imaging (QI) is demonstrating strong promise across multiple clinical applications. For clinical translation of QI methods, objective evaluation on clinically relevant tasks is essential. To address this need, multiple evaluation strategies are being developed. In this paper, based on previous literature, we outline four emerging frameworks to perform evaluation studies of QI methods. We first discuss the use of virtual imaging trials (VITs) to evaluate QI methods. Next, we outline a no-gold-standard evaluation framework to clinically evaluate QI methods without ground truth. Third, a framework to evaluate QI methods for joint detection and quantification tasks is outlined. Finally, we outline a framework to evaluate QI methods that output multi-dimensional parameters, such as radiomic features. We review these frameworks, discussing their utilities and limitations. Further, we examine future research areas in evaluation of QI methods. Given the recent advancements in PET, including long axial field-of-view scanners and the development of artificial-intelligence algorithms, we present these frameworks in the context of PET.

Self-supervised Deep Learning for Denoising in Ultrasound Microvascular Imaging

Lijie Huang, Jingyi Yin, Jingke Zhang, U-Wai Lok, Ryan M. DeRuiter, Jieyang Jin, Kate M. Knoll, Kendra E. Petersen, James D. Krier, Xiang-yang Zhu, Gina K. Hesley, Kathryn A. Robinson, Andrew J. Bentall, Thomas D. Atwell, Andrew D. Rule, Lilach O. Lerman, Shigao Chen, Chengwu Huang

arxiv logopreprintJul 7 2025
Ultrasound microvascular imaging (UMI) is often hindered by low signal-to-noise ratio (SNR), especially in contrast-free or deep tissue scenarios, which impairs subsequent vascular quantification and reliable disease diagnosis. To address this challenge, we propose Half-Angle-to-Half-Angle (HA2HA), a self-supervised denoising framework specifically designed for UMI. HA2HA constructs training pairs from complementary angular subsets of beamformed radio-frequency (RF) blood flow data, across which vascular signals remain consistent while noise varies. HA2HA was trained using in-vivo contrast-free pig kidney data and validated across diverse datasets, including contrast-free and contrast-enhanced data from pig kidneys, as well as human liver and kidney. An improvement exceeding 15 dB in both contrast-to-noise ratio (CNR) and SNR was observed, indicating a substantial enhancement in image quality. In addition to power Doppler imaging, denoising directly in the RF domain is also beneficial for other downstream processing such as color Doppler imaging (CDI). CDI results of human liver derived from the HA2HA-denoised signals exhibited improved microvascular flow visualization, with a suppressed noisy background. HA2HA offers a label-free, generalizable, and clinically applicable solution for robust vascular imaging in both contrast-free and contrast-enhanced UMI.

MedGemma Technical Report

Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo Kohlberger, Shawn Xu, Fayaz Jamil, Cían Hughes, Charles Lau, Justin Chen, Fereshteh Mahvar, Liron Yatziv, Tiffany Chen, Bram Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per Bjornsson, Shashir Reddy, Ryan Brush, Kenneth Philbrick, Howard Hu, Howard Yang, Richa Tiwari, Sunny Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry Lepikhin, Vlad Feinberg, Sebastian Borgeaud, Alek Andreev, Cassidy Hardin, Robert Dadashi, Léonard Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias, Katherine Chou, Avinatan Hassidim, Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens, David Fleet, Victor Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty, David F. Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, Lin Yang

arxiv logopreprintJul 7 2025
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.

Introducing Image-Space Preconditioning in the Variational Formulation of MRI Reconstructions

Bastien Milani, Jean-Baptist Ledoux, Berk Can Acikgoz, Xavier Richard

arxiv logopreprintJul 7 2025
The aim of the present article is to enrich the comprehension of iterative magnetic resonance imaging (MRI) reconstructions, including compressed sensing (CS) and iterative deep learning (DL) reconstructions, by describing them in the general framework of finite-dimensional inner-product spaces. In particular, we show that image-space preconditioning (ISP) and data-space preconditioning (DSP) can be formulated as non-conventional inner-products. The main gain of our reformulation is an embedding of ISP in the variational formulation of the MRI reconstruction problem (in an algorithm-independent way) which allows in principle to naturally and systematically propagate ISP in all iterative reconstructions, including many iterative DL and CS reconstructions where preconditioning is lacking. The way in which we apply linear algebraic tools to MRI reconstructions as presented in this article is a novelty. A secondary aim of our article is to offer a certain didactic material to scientists who are new in the field of MRI reconstruction. Since we explore here some mathematical concepts of reconstruction, we take that opportunity to recall some principles that may be understood for experts, but which may be hard to find in the literature for beginners. In fact, the description of many mathematical tools of MRI reconstruction is fragmented in the literature or sometimes missing because considered as a general knowledge. Further, some of those concepts can be found in mathematic manuals, but not in a form that is oriented toward MRI. For example, we think of the conjugate gradient descent, the notion of derivative with respect to non-conventional inner products, or simply the notion of adjoint. The authors believe therefore that it is beneficial for their field of research to dedicate some space to such a didactic material.

X-ray transferable polyrepresentation learning

Weronika Hryniewska-Guzik, Przemyslaw Biecek

arxiv logopreprintJul 7 2025
The success of machine learning algorithms is inherently related to the extraction of meaningful features, as they play a pivotal role in the performance of these algorithms. Central to this challenge is the quality of data representation. However, the ability to generalize and extract these features effectively from unseen datasets is also crucial. In light of this, we introduce a novel concept: the polyrepresentation. Polyrepresentation integrates multiple representations of the same modality extracted from distinct sources, for example, vector embeddings from the Siamese Network, self-supervised models, and interpretable radiomic features. This approach yields better performance metrics compared to relying on a single representation. Additionally, in the context of X-ray images, we demonstrate the transferability of the created polyrepresentation to a smaller dataset, underscoring its potential as a pragmatic and resource-efficient approach in various image-related solutions. It is worth noting that the concept of polyprepresentation on the example of medical data can also be applied to other domains, showcasing its versatility and broad potential impact.

Sequential Attention-based Sampling for Histopathological Analysis

Tarun G, Naman Malpani, Gugan Thoppe, Sridharan Devarajan

arxiv logopreprintJul 7 2025
Deep neural networks are increasingly applied for automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering it computationally infeasible to analyze them entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches, to achieve reliable diagnosis. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features.

Automated Deep Learning-Based 3D-to-2D Segmentation of Geographic Atrophy in Optical Coherence Tomography Data

Al-khersan, H., Oakley, J. D., Russakoff, D. B., Cao, J. A., Saju, S. M., Zhou, A., Sodhi, S. K., Pattathil, N., Choudhry, N., Boyer, D. S., Wykoff, C. C.

medrxiv logopreprintJul 7 2025
PurposeWe report on a deep learning-based approach to the segmentation of geographic atrophy (GA) in patients with advanced age-related macular degeneration (AMD). MethodThree-dimensional (3D) optical coherence tomography (OCT) data was collected from two instruments at two different retina practices. This totaled 367 and 348 volumes, respectively, of routinely collected clinical data. For all data, the accuracy of a 3D-to-2D segmentation model was assessed relative to ground-truth manual labeling. ResultsDice Similarity Scores (DSC) averaged 0.824 and 0.826 for each data set. Correlations (r2) between manual and automated areas were 0.883 and 0.906, respectively. The inclusion of near Infra-red imagery as an additional information channel to the algorithm did not notably improve performance. ConclusionAccurate assessment of GA in real-world clinical OCT data can be achieved using deep learning. In the advent of therapeutics to slow the rate of GA progression, reliable, automated assessment is a clinical objective and this work validates one such method.

Development and International Validation of a Deep Learning Model for Predicting Acute Pancreatitis Severity from CT Scans

Xu, Y., Teutsch, B., Zeng, W., Hu, Y., Rastogi, S., Hu, E. Y., DeGregorio, I. M., Fung, C. W., Richter, B. I., Cummings, R., Goldberg, J. E., Mathieu, E., Appiah Asare, B., Hegedus, P., Gurza, K.-B., Szabo, I. V., Tarjan, H., Szentesi, A., Borbely, R., Molnar, D., Faluhelyi, N., Vincze, A., Marta, K., Hegyi, P., Lei, Q., Gonda, T., Huang, C., Shen, Y.

medrxiv logopreprintJul 7 2025
Background and aimsAcute pancreatitis (AP) is a common gastrointestinal disease with rising global incidence. While most cases are mild, severe AP (SAP) carries high mortality. Early and accurate severity prediction is crucial for optimal management. However, existing severity prediction models, such as BISAP and mCTSI, have modest accuracy and often rely on data unavailable at admission. This study proposes a deep learning (DL) model to predict AP severity using abdominal contrast-enhanced CT (CECT) scans acquired within 24 hours of admission. MethodsWe collected 10,130 studies from 8,335 patients across a multi-site U.S. health system. The model was trained in two stages: (1) self-supervised pretraining on large-scale unlabeled CT studies and (2) fine-tuning on 550 labeled studies. Performance was evaluated against mCTSI and BISAP on a hold-out internal test set (n=100 patients) and externally validated on a Hungarian AP registry (n=518 patients). ResultsOn the internal test set, the model achieved AUROCs of 0.888 (95% CI: 0.800-0.960) for SAP and 0.888 (95% CI: 0.819-0.946) for mild AP (MAP), outperforming mCTSI (p = 0.002). External validation showed robust AUROCs of 0.887 (95% CI: 0.825-0.941) for SAP and 0.858 (95% CI: 0.826-0.888) for MAP, surpassing mCTSI (p = 0.024) and BISAP (p = 0.002). Retrospective simulation suggested the models potential to support admission triage and serve as a second reader during CECT interpretation. ConclusionsThe proposed DL model outperformed standard scoring systems for AP severity prediction, generalized well to external data, and shows promise for providing early clinical decision support and improving resource allocation.

Introducing Image-Space Preconditioning in the Variational Formulation of MRI Reconstructions

Bastien Milani, Jean-Baptist Ledoux, Berk Can Acikgoz, Xavier Richard

arxiv logopreprintJul 7 2025
The aim of the present article is to enrich the comprehension of iterative magnetic resonance imaging (MRI) reconstructions, including compressed sensing (CS) and iterative deep learning (DL) reconstructions, by describing them in the general framework of finite-dimensional inner-product spaces. In particular, we show that image-space preconditioning (ISP) and data-space preconditioning (DSP) can be formulated as non-conventional inner-products. The main gain of our reformulation is an embedding of ISP in the variational formulation of the MRI reconstruction problem (in an algorithm-independent way) which allows in principle to naturally and systematically propagate ISP in all iterative reconstructions, including many iterative DL and CS reconstructions where preconditioning is lacking. The way in which we apply linear algebraic tools to MRI reconstructions as presented in this article is a novelty. A secondary aim of our article is to offer a certain didactic material to scientists who are new in the field of MRI reconstruction. Since we explore here some mathematical concepts of reconstruction, we take that opportunity to recall some principles that may be understood for experts, but which may be hard to find in the literature for beginners. In fact, the description of many mathematical tools of MRI reconstruction is fragmented in the literature or sometimes missing because considered as a general knowledge. Further, some of those concepts can be found in mathematic manuals, but not in a form that is oriented toward MRI. For example, we think of the conjugate gradient descent, the notion of derivative with respect to non-conventional inner products, or simply the notion of adjoint. The authors believe therefore that it is beneficial for their field of research to dedicate some space to such a didactic material.

FB-Diff: Fourier Basis-guided Diffusion for Temporal Interpolation of 4D Medical Imaging

Xin You, Runze Yang, Chuyan Zhang, Zhongliang Jiang, Jie Yang, Nassir Navab

arxiv logopreprintJul 6 2025
The temporal interpolation task for 4D medical imaging, plays a crucial role in clinical practice of respiratory motion modeling. Following the simplified linear-motion hypothesis, existing approaches adopt optical flow-based models to interpolate intermediate frames. However, realistic respiratory motions should be nonlinear and quasi-periodic with specific frequencies. Intuited by this property, we resolve the temporal interpolation task from the frequency perspective, and propose a Fourier basis-guided Diffusion model, termed FB-Diff. Specifically, due to the regular motion discipline of respiration, physiological motion priors are introduced to describe general characteristics of temporal data distributions. Then a Fourier motion operator is elaborately devised to extract Fourier bases by incorporating physiological motion priors and case-specific spectral information in the feature space of Variational Autoencoder. Well-learned Fourier bases can better simulate respiratory motions with motion patterns of specific frequencies. Conditioned on starting and ending frames, the diffusion model further leverages well-learned Fourier bases via the basis interaction operator, which promotes the temporal interpolation task in a generative manner. Extensive results demonstrate that FB-Diff achieves state-of-the-art (SOTA) perceptual performance with better temporal consistency while maintaining promising reconstruction metrics. Codes are available.
Page 51 of 1091083 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.