Sort by:
Page 5 of 761 results

Automated Thoracolumbar Stump Rib Detection and Analysis in a Large CT Cohort

Hendrik Möller, Hanna Schön, Alina Dima, Benjamin Keinert-Weth, Robert Graf, Matan Atad, Johannes Paetzold, Friederike Jungmann, Rickmer Braren, Florian Kofler, Bjoern Menze, Daniel Rueckert, Jan S. Kirschke

arxiv logopreprintMay 8 2025
Thoracolumbar stump ribs are one of the essential indicators of thoracolumbar transitional vertebrae or enumeration anomalies. While some studies manually assess these anomalies and describe the ribs qualitatively, this study aims to automate thoracolumbar stump rib detection and analyze their morphology quantitatively. To this end, we train a high-resolution deep-learning model for rib segmentation and show significant improvements compared to existing models (Dice score 0.997 vs. 0.779, p-value < 0.01). In addition, we use an iterative algorithm and piece-wise linear interpolation to assess the length of the ribs, showing a success rate of 98.2%. When analyzing morphological features, we show that stump ribs articulate more posteriorly at the vertebrae (-19.2 +- 3.8 vs -13.8 +- 2.5, p-value < 0.01), are thinner (260.6 +- 103.4 vs. 563.6 +- 127.1, p-value < 0.01), and are oriented more downwards and sideways within the first centimeters in contrast to full-length ribs. We show that with partially visible ribs, these features can achieve an F1-score of 0.84 in differentiating stump ribs from regular ones. We publish the model weights and masks for public use.

FF-PNet: A Pyramid Network Based on Feature and Field for Brain Image Registration

Ying Zhang, Shuai Guo, Chenxi Sun, Yuchen Zhu, Jinhai Xiang

arxiv logopreprintMay 8 2025
In recent years, deformable medical image registration techniques have made significant progress. However, existing models still lack efficiency in parallel extraction of coarse and fine-grained features. To address this, we construct a new pyramid registration network based on feature and deformation field (FF-PNet). For coarse-grained feature extraction, we design a Residual Feature Fusion Module (RFFM), for fine-grained image deformation, we propose a Residual Deformation Field Fusion Module (RDFFM). Through the parallel operation of these two modules, the model can effectively handle complex image deformations. It is worth emphasizing that the encoding stage of FF-PNet only employs traditional convolutional neural networks without any attention mechanisms or multilayer perceptrons, yet it still achieves remarkable improvements in registration accuracy, fully demonstrating the superior feature decoding capabilities of RFFM and RDFFM. We conducted extensive experiments on the LPBA and OASIS datasets. The results show our network consistently outperforms popular methods in metrics like the Dice Similarity Coefficient.

MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation

Tengya Peng, Ruyi Zha, Qing Zou

arxiv logopreprintMay 8 2025
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI), utilizing a three-dimensional Gaussian representation (3DGS). The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction by enabling data smoothing between voxels for continuous spatial representation. Pulmonary MRI data acquisition is performed using a golden-angle radial sampling trajectory, with respiratory motion signals extracted from the center of k-space in each radial spoke. Based on the estimated motion signal, the k-space data is sorted into multiple respiratory phases. A 3DGS framework is then applied to reconstruct a reference image volume from the first motion state. Subsequently, a patient-specific convolutional neural network is trained to estimate the deformation vector fields (DVFs), which are used to generate the remaining motion states through spatial transformation of the reference volume. The proposed reconstruction pipeline is evaluated on six datasets from six subjects and bench-marked against three state-of-the-art reconstruction methods. The experimental findings demonstrate that the proposed reconstruction framework effectively reconstructs high-resolution, motion-resolved pulmonary MR images. Compared with existing approaches, it achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio. The proposed unsupervised 3DGS-based reconstruction method enables accurate motion-resolved pulmonary MRI with isotropic spatial resolution. Its superior performance in image quality metrics over state-of-the-art methods highlights its potential as a robust solution for clinical pulmonary MR imaging.

Cross-scale prediction of glioblastoma MGMT methylation status based on deep learning combined with magnetic resonance images and pathology images

Wu, X., Wei, W., Li, Y., Ma, M., Hu, Z., Xu, Y., Hu, W., Chen, G., Zhao, R., Kang, X., Yin, H., Xi, Y.

medrxiv logopreprintMay 8 2025
BackgroundIn glioblastoma (GBM), promoter methylation of the O6-methylguanine-DNA methyltransferase (MGMT) is associated with beneficial chemotherapy but has not been accurately evaluated based on radiological and pathological sections. To develop and validate an MRI and pathology image-based deep learning radiopathomics model for predicting MGMT promoter methylation in patients with GBM. MethodsA retrospective collection of pathologically confirmed isocitrate dehydrogenase (IDH) wild-type GBM patients (n=207) from three centers was performed, all of whom underwent MRI scanning within 2 weeks prior to surgery. The pre-trained ResNet50 was used as the feature extractor. Features of 1024 dimensions were extracted from MRI and pathological images, respectively, and the features were screened for modeling. Then feature fusion was performed by calculating the normalized multimode MRI fusion features and pathological features, and prediction models of MGMT based on deep learning radiomics, pathomics, and radiopathomics (DLRM, DLPM, DLRPM) were constructed and applied to internal and external validation cohorts. ResultsIn the training, internal and external validation cohorts, the DLRPM further improved the predictive performance, with a significantly better predictive performance than the DLRM and DLPM, with AUCs of 0.920 (95% CI 0.870-0.968), 0.854 (95% CI 0.702-1), and 0.840 (95% CI 0.625-1). ConclusionWe developed and validated cross-scale radiology and pathology models for predicting MGMT methylation status, with DLRPM predicting the best performance, and this cross-scale approach paves the way for further research and clinical applications in the future.

Neuroanatomical-Based Machine Learning Prediction of Alzheimer's Disease Across Sex and Age

Jogeshwar, B. K., Lu, S., Nephew, B. C.

medrxiv logopreprintMay 7 2025
Alzheimers Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. In 2024, in the US alone, it affected approximately 1 in 9 people aged 65 and older, equivalent to 6.9 million individuals. Early detection and accurate AD diagnosis are crucial for improving patient outcomes. Magnetic resonance imaging (MRI) has emerged as a valuable tool for examining brain structure and identifying potential AD biomarkers. This study performs predictive analyses by employing machine learning techniques to identify key brain regions associated with AD using numerical data derived from anatomical MRI scans, going beyond standard statistical methods. Using the Random Forest Algorithm, we achieved 92.87% accuracy in detecting AD from Mild Cognitive Impairment and Cognitive Normals. Subgroup analyses across nine sex- and age-based cohorts (69-76 years, 77-84 years, and unified 69-84 years) revealed the hippocampus, amygdala, and entorhinal cortex as consistent top-rank predictors. These regions showed distinct volume reductions across age and sex groups, reflecting distinct age- and sex-related neuroanatomical patterns. For instance, younger males and females (aged 69-76) exhibited volume decreases in the right hippocampus, suggesting its importance in the early stages of AD. Older males (77-84) showed substantial volume decreases in the left inferior temporal cortex. Additionally, the left middle temporal cortex showed decreased volume in females, suggesting a potential female-specific influence, while the right entorhinal cortex may have a male-specific impact. These age-specific sex differences could inform clinical research and treatment strategies, aiding in identifying neuroanatomical markers and therapeutic targets for future clinical interventions.

Interpretable MRI-Based Deep Learning for Alzheimer's Risk and Progression

Lu, B., Chen, Y.-R., Li, R.-X., Zhang, M.-K., Yan, S.-Z., Chen, G.-Q., Castellanos, F. X., Thompson, P. M., Lu, J., Han, Y., Yan, C.-G.

medrxiv logopreprintMay 7 2025
Timely intervention for Alzheimers disease (AD) requires early detection. The development of immunotherapies targeting amyloid-beta and tau underscores the need for accessible, time-efficient biomarkers for early diagnosis. Here, we directly applied our previously developed MRI-based deep learning model for AD to the large Chinese SILCODE cohort (722 participants, 1,105 brain MRI scans). The model -- initially trained on North American data -- demonstrated robust cross-ethnic generalization, without any retraining or fine-tuning, achieving an AUC of 91.3% in AD classification with a sensitivity of 95.2%. It successfully identified 86.7% of individuals at risk of AD progression more than 5 years in advance. Individuals identified as high-risk exhibited significantly shorter median progression times. By integrating an interpretable deep learning brain risk map approach, we identified AD brain subtypes, including an MCI subtype associated with rapid cognitive decline. The models risk scores showed significant correlations with cognitive measures and plasma biomarkers, such as tau proteins and neurofilament light chain (NfL). These findings underscore the exceptional generalizability and clinical utility of MRI-based deep learning models, especially in large and diverse populations, offering valuable tools for early therapeutic intervention. The model has been made open-source and deployed to a free online website for AD risk prediction, to assist in early screening and intervention.

False Promises in Medical Imaging AI? Assessing Validity of Outperformance Claims

Evangelia Christodoulou, Annika Reinke, Pascaline Andrè, Patrick Godau, Piotr Kalinowski, Rola Houhou, Selen Erkan, Carole H. Sudre, Ninon Burgos, Sofiène Boutaj, Sophie Loizillon, Maëlys Solal, Veronika Cheplygina, Charles Heitz, Michal Kozubek, Michela Antonelli, Nicola Rieke, Antoine Gilson, Leon D. Mayer, Minu D. Tizabi, M. Jorge Cardoso, Amber Simpson, Annette Kopp-Schneider, Gaël Varoquaux, Olivier Colliot, Lena Maier-Hein

arxiv logopreprintMay 7 2025
Performance comparisons are fundamental in medical imaging Artificial Intelligence (AI) research, often driving claims of superiority based on relative improvements in common performance metrics. However, such claims frequently rely solely on empirical mean performance. In this paper, we investigate whether newly proposed methods genuinely outperform the state of the art by analyzing a representative cohort of medical imaging papers. We quantify the probability of false claims based on a Bayesian approach that leverages reported results alongside empirically estimated model congruence to estimate whether the relative ranking of methods is likely to have occurred by chance. According to our results, the majority (>80%) of papers claims outperformance when introducing a new method. Our analysis further revealed a high probability (>5%) of false outperformance claims in 86% of classification papers and 53% of segmentation papers. These findings highlight a critical flaw in current benchmarking practices: claims of outperformance in medical imaging AI are frequently unsubstantiated, posing a risk of misdirecting future research efforts.

Convergent Complex Quasi-Newton Proximal Methods for Gradient-Driven Denoisers in Compressed Sensing MRI Reconstruction

Tao Hong, Zhaoyi Xu, Se Young Chun, Luis Hernandez-Garcia, Jeffrey A. Fessler

arxiv logopreprintMay 7 2025
In compressed sensing (CS) MRI, model-based methods are pivotal to achieving accurate reconstruction. One of the main challenges in model-based methods is finding an effective prior to describe the statistical distribution of the target image. Plug-and-Play (PnP) and REgularization by Denoising (RED) are two general frameworks that use denoisers as the prior. While PnP/RED methods with convolutional neural networks (CNNs) based denoisers outperform classical hand-crafted priors in CS MRI, their convergence theory relies on assumptions that do not hold for practical CNNs. The recently developed gradient-driven denoisers offer a framework that bridges the gap between practical performance and theoretical guarantees. However, the numerical solvers for the associated minimization problem remain slow for CS MRI reconstruction. This paper proposes a complex quasi-Newton proximal method that achieves faster convergence than existing approaches. To address the complex domain in CS MRI, we propose a modified Hessian estimation method that guarantees Hermitian positive definiteness. Furthermore, we provide a rigorous convergence analysis of the proposed method for nonconvex settings. Numerical experiments on both Cartesian and non-Cartesian sampling trajectories demonstrate the effectiveness and efficiency of our approach.

An imageless magnetic resonance framework for fast and cost-effective decision-making

Alba González-Cebrián, Pablo García-Cristóbal, Fernando Galve, Efe Ilıcak, Viktor Van Der Valk, Marius Staring, Andrew Webb, Joseba Alonso

arxiv logopreprintMay 7 2025
Magnetic Resonance Imaging (MRI) is the gold standard in countless diagnostic procedures, yet hardware complexity, long scans, and cost preclude rapid screening and point-of-care use. We introduce Imageless Magnetic Resonance Diagnosis (IMRD), a framework that bypasses k-space sampling and image reconstruction by analyzing raw one-dimensional MR signals. We identify potentially impactful embodiments where IMRD requires only optimized pulse sequences for time-domain contrast, minimal low-field hardware, and pattern recognition algorithms to answer clinical closed queries and quantify lesion burden. As a proof of concept, we simulate multiple sclerosis lesions in silico within brain phantoms and deploy two extremely fast protocols (approximately 3 s), with and without spatial information. A 1D convolutional neural network achieves AUC close to 0.95 for lesion detection and R2 close to 0.99 for volume estimation. We also perform robustness tests under reduced signal-to-noise ratio, partial signal omission, and relaxation-time variability. By reframing MR signals as direct diagnostic metrics, IMRD paves the way for fast, low-cost MR screening and monitoring in resource-limited environments.

Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence

Ziyuan Huang, Kevin Huggins, Srikar Bellur

arxiv logopreprintMay 7 2025
Our study presents PNN-UNet as a method for constructing deep neural networks that replicate the planarian neural network (PNN) structure in the context of 3D medical image data. Planarians typically have a cerebral structure comprising two neural cords, where the cerebrum acts as a coordinator, and the neural cords serve slightly different purposes within the organism's neurological system. Accordingly, PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain. This distinct architecture offers advantages over both monolithic (UNet) and modular networks (Ensemble-UNet). Our outcomes on a 3D MRI hippocampus dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet and several other UNet variants in image segmentation.
Page 5 of 761 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.