Sort by:
Page 48 of 54531 results

Explainability Through Human-Centric Design for XAI in Lung Cancer Detection

Amy Rafferty, Rishi Ramaesh, Ajitha Rajan

arxiv logopreprintMay 14 2025
Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.

Single View Echocardiographic Analysis for Left Ventricular Outflow Tract Obstruction Prediction in Hypertrophic Cardiomyopathy: A Deep Learning Approach

Kim, J., Park, J., Jeon, J., Yoon, Y. E., Jang, Y., Jeong, H., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 14 2025
BackgroundAccurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler, and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE). MethodsA DL model was trained on PLAX videos extracted from TTE examinations (developmental dataset, n=1,007) to capture both morphological and dynamic motion features, generating a DL index for LVOTO (DLi-LVOTO, range 0-100). Performance was evaluated in an internal test dataset (ITDS, n=87) and externally validated in the distinct hospital dataset (DHDS, n=1,334) and the LVOTO reduction treatment dataset (n=156). ResultsThe model achieved high accuracy in detecting severe LVOTO (pressure gradient[&ge;] 50mmHg), with area under the receiver operating characteristics curve (AUROC) of 0.97 (95% confidence interval: 0.92-1.00) in ITDS and 0.93 (0.92-0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative predictive value (NPV) of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and NPV of 95.5%. DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten treatment, correlating with reductions in peak pressure gradient (p<0.001 for all). ConclusionsOur DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a complementary tool, particularly in resource-limited settings or when Doppler is unavailable, and for monitoring treatment response.

Multi-Task Deep Learning for Predicting Metabolic Syndrome from Retinal Fundus Images in a Japanese Health Checkup Dataset

Itoh, T., Nishitsuka, K., Fukuma, Y., Wada, S.

medrxiv logopreprintMay 14 2025
BackgroundRetinal fundus images provide a noninvasive window into systemic health, offering opportunities for early detection of metabolic disorders such as metabolic syndrome (METS). ObjectiveThis study aimed to develop a deep learning model to predict METS from fundus images obtained during routine health checkups, leveraging a multi-task learning approach. MethodsWe retrospectively analyzed 5,000 fundus images from Japanese health checkup participants. Convolutional neural network (CNN) models were trained to classify METS status, incorporating fundus-specific data augmentation strategies and auxiliary regression tasks targeting clinical parameters such as abdominal circumference (AC). Model performance was evaluated using validation accuracy, test accuracy, and the area under the receiver operating characteristic curve (AUC). ResultsModels employing fundus-specific augmentation demonstrated more stable convergence and superior validation accuracy compared to general-purpose augmentation. Incorporating AC as an auxiliary task further enhanced performance across architectures. The final ensemble model with test-time augmentation achieved a test accuracy of 0.696 and an AUC of 0.73178. ConclusionCombining multi-task learning, fundus-specific data augmentation, and ensemble prediction substantially improves deep learning-based METS classification from fundus images. This approach may offer a practical, noninvasive screening tool for metabolic syndrome in general health checkup settings.

Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS) challenge results

Meritxell Riera-Marin, Sikha O K, Julia Rodriguez-Comas, Matthias Stefan May, Zhaohong Pan, Xiang Zhou, Xiaokun Liang, Franciskus Xaverius Erick, Andrea Prenner, Cedric Hemon, Valentin Boussot, Jean-Louis Dillenseger, Jean-Claude Nunes, Abdul Qayyum, Moona Mazher, Steven A Niederer, Kaisar Kushibar, Carlos Martin-Isla, Petia Radeva, Karim Lekadir, Theodore Barfoot, Luis C. Garcia Peraza Herrera, Ben Glocker, Tom Vercauteren, Lucas Gago, Justin Englemann, Joy-Marie Kleiss, Anton Aubanell, Andreu Antolin, Javier Garcia-Lopez, Miguel A. Gonzalez Ballester, Adrian Galdran

arxiv logopreprintMay 13 2025
Deep learning (DL) has become the dominant approach for medical image segmentation, yet ensuring the reliability and clinical applicability of these models requires addressing key challenges such as annotation variability, calibration, and uncertainty estimation. This is why we created the Calibration and Uncertainty for multiRater Volume Assessment in multiorgan Segmentation (CURVAS), which highlights the critical role of multiple annotators in establishing a more comprehensive ground truth, emphasizing that segmentation is inherently subjective and that leveraging inter-annotator variability is essential for robust model evaluation. Seven teams participated in the challenge, submitting a variety of DL models evaluated using metrics such as Dice Similarity Coefficient (DSC), Expected Calibration Error (ECE), and Continuous Ranked Probability Score (CRPS). By incorporating consensus and dissensus ground truth, we assess how DL models handle uncertainty and whether their confidence estimates align with true segmentation performance. Our findings reinforce the importance of well-calibrated models, as better calibration is strongly correlated with the quality of the results. Furthermore, we demonstrate that segmentation models trained on diverse datasets and enriched with pre-trained knowledge exhibit greater robustness, particularly in cases deviating from standard anatomical structures. Notably, the best-performing models achieved high DSC and well-calibrated uncertainty estimates. This work underscores the need for multi-annotator ground truth, thorough calibration assessments, and uncertainty-aware evaluations to develop trustworthy and clinically reliable DL-based medical image segmentation models.

Congenital Heart Disease recognition using Deep Learning/Transformer models

Aidar Amangeldi, Vladislav Yarovenko, Angsar Taigonyrov

arxiv logopreprintMay 13 2025
Congenital Heart Disease (CHD) remains a leading cause of infant morbidity and mortality, yet non-invasive screening methods often yield false negatives. Deep learning models, with their ability to automatically extract features, can assist doctors in detecting CHD more effectively. In this work, we investigate the use of dual-modality (sound and image) deep learning methods for CHD diagnosis. We achieve 73.9% accuracy on the ZCHSound dataset and 80.72% accuracy on the DICOM Chest X-ray dataset.

Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking

Yu-Jen Chen, Xueyang Li, Yiyu Shi, Tsung-Yi Ho

arxiv logopreprintMay 13 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.

A Deep Learning-Driven Framework for Inhalation Injury Grading Using Bronchoscopy Images

Yifan Li, Alan W Pang, Jo Woon Chong

arxiv logopreprintMay 13 2025
Inhalation injuries face a challenge in clinical diagnosis and grading due to the limitations of traditional methods, such as Abbreviated Injury Score (AIS), which rely on subjective assessments and show weak correlations with clinical outcomes. This study introduces a novel deep learning-based framework for grading inhalation injuries using bronchoscopy images with the duration of mechanical ventilation as an objective metric. To address the scarcity of medical imaging data, we propose enhanced StarGAN, a generative model that integrates Patch Loss and SSIM Loss to improve synthetic images' quality and clinical relevance. The augmented dataset generated by enhanced StarGAN significantly improved classification performance when evaluated using the Swin Transformer, achieving an accuracy of 77.78%, an 11.11% improvement over the original dataset. Image quality was assessed using the Fr\'echet Inception Distance (FID), where Enhanced StarGAN achieved the lowest FID of 30.06, outperforming baseline models. Burn surgeons confirmed the realism and clinical relevance of the generated images, particularly the preservation of bronchial structures and color distribution. These results highlight the potential of enhanced StarGAN in addressing data limitations and improving classification accuracy for inhalation injury grading.

An incremental algorithm for non-convex AI-enhanced medical image processing

Elena Morotti

arxiv logopreprintMay 13 2025
Solving non-convex regularized inverse problems is challenging due to their complex optimization landscapes and multiple local minima. However, these models remain widely studied as they often yield high-quality, task-oriented solutions, particularly in medical imaging, where the goal is to enhance clinically relevant features rather than merely minimizing global error. We propose incDG, a hybrid framework that integrates deep learning with incremental model-based optimization to efficiently approximate the $\ell_0$-optimal solution of imaging inverse problems. Built on the Deep Guess strategy, incDG exploits a deep neural network to generate effective initializations for a non-convex variational solver, which refines the reconstruction through regularized incremental iterations. This design combines the efficiency of Artificial Intelligence (AI) tools with the theoretical guarantees of model-based optimization, ensuring robustness and stability. We validate incDG on TpV-regularized optimization tasks, demonstrating its effectiveness in medical image deblurring and tomographic reconstruction across diverse datasets, including synthetic images, brain CT slices, and chest-abdomen scans. Results show that incDG outperforms both conventional iterative solvers and deep learning-based methods, achieving superior accuracy and stability. Moreover, we confirm that training incDG without ground truth does not significantly degrade performance, making it a practical and powerful tool for solving non-convex inverse problems in imaging and beyond.

Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models

Jin Liu, Qing Lin, Zhuang Xiong, Shanshan Shan, Chunyi Liu, Min Li, Feng Liu, G. Bruce Pike, Hongfu Sun, Yang Gao

arxiv logopreprintMay 13 2025
Incoherent k-space under-sampling and deep learning-based reconstruction methods have shown great success in accelerating MRI. However, the performance of most previous methods will degrade dramatically under high acceleration factors, e.g., 8$\times$ or higher. Recently, denoising diffusion models (DM) have demonstrated promising results in solving this issue; however, one major drawback of the DM methods is the long inference time due to a dramatic number of iterative reverse posterior sampling steps. In this work, a Single Step Diffusion Model-based reconstruction framework, namely SSDM-MRI, is proposed for restoring MRI images from highly undersampled k-space. The proposed method achieves one-step reconstruction by first training a conditional DM and then iteratively distilling this model. Comprehensive experiments were conducted on both publicly available fastMRI images and an in-house multi-echo GRE (QSM) subject. Overall, the results showed that SSDM-MRI outperformed other methods in terms of numerical metrics (PSNR and SSIM), qualitative error maps, image fine details, and latent susceptibility information hidden in MRI phase images. In addition, the reconstruction time for a 320*320 brain slice of SSDM-MRI is only 0.45 second, which is only comparable to that of a simple U-net, making it a highly effective solution for MRI reconstruction tasks.

AmygdalaGo-BOLT: an open and reliable AI tool to trace boundaries of human amygdala

Zhou, Q., Dong, B., Gao, P., Jintao, W., Xiao, J., Wang, W., Liang, P., Lin, D., Zuo, X.-N., He, H.

biorxiv logopreprintMay 13 2025
Each year, thousands of brain MRI scans are collected to study structural development in children and adolescents. However, the amygdala, a particularly small and complex structure, remains difficult to segment reliably, especially in developing populations where its volume is even smaller. To address this challenge, we developed AmygdalaGo-BOLT, a boundary-aware deep learning model tailored for human amygdala segmentation. It was trained and validated using 854 manually labeled scans from pediatric datasets, with independent samples used to ensure performance generalizability. The model integrates multiscale image features, spatial priors, and self-attention mechanisms within a compact encoder-decoder architecture to enhance boundary detection. Validation across multiple imaging centers and age groups shows that AmygdalaGo-BOLT closely matches expert manual labels, improves processing efficiency, and outperforms existing tools in accuracy. This enables robust and scalable analysis of amygdala morphology in developmental neuroimaging studies where manual tracing is impractical. To support open and reproducible science, we publicly release both the labeled datasets and the full source code.
Page 48 of 54531 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.