Sort by:
Page 46 of 54531 results

Patient-Specific Autoregressive Models for Organ Motion Prediction in Radiotherapy

Yuxiang Lai, Jike Zhong, Vanessa Su, Xiaofeng Yang

arxiv logopreprintMay 17 2025
Radiotherapy often involves a prolonged treatment period. During this time, patients may experience organ motion due to breathing and other physiological factors. Predicting and modeling this motion before treatment is crucial for ensuring precise radiation delivery. However, existing pre-treatment organ motion prediction methods primarily rely on deformation analysis using principal component analysis (PCA), which is highly dependent on registration quality and struggles to capture periodic temporal dynamics for motion modeling.In this paper, we observe that organ motion prediction closely resembles an autoregressive process, a technique widely used in natural language processing (NLP). Autoregressive models predict the next token based on previous inputs, naturally aligning with our objective of predicting future organ motion phases. Building on this insight, we reformulate organ motion prediction as an autoregressive process to better capture patient-specific motion patterns. Specifically, we acquire 4D CT scans for each patient before treatment, with each sequence comprising multiple 3D CT phases. These phases are fed into the autoregressive model to predict future phases based on prior phase motion patterns. We evaluate our method on a real-world test set of 4D CT scans from 50 patients who underwent radiotherapy at our institution and a public dataset containing 4D CT scans from 20 patients (some with multiple scans), totaling over 1,300 3D CT phases. The performance in predicting the motion of the lung and heart surpasses existing benchmarks, demonstrating its effectiveness in capturing motion dynamics from CT images. These results highlight the potential of our method to improve pre-treatment planning in radiotherapy, enabling more precise and adaptive radiation delivery.

Foundation versus Domain-Specific Models for Left Ventricular Segmentation on Cardiac Ultrasound

Chao, C.-J., Gu, Y., Kumar, W., Xiang, T., Appari, L., Wu, J., Farina, J. M., Wraith, R., Jeong, J., Arsanjani, R., Garvan, K. C., Oh, J. K., Langlotz, C. P., Banerjee, I., Li, F.-F., Adeli, E.

medrxiv logopreprintMay 17 2025
The Segment Anything Model (SAM) was fine-tuned on the EchoNet-Dynamic dataset and evaluated on external transthoracic echocardiography (TTE) and Point-of-Care Ultrasound (POCUS) datasets from CAMUS (University Hospital of St Etienne) and Mayo Clinic (99 patients: 58 TTE, 41 POCUS). Fine-tuned SAM was superior or comparable to MedSAM. The fine-tuned SAM also outperformed EchoNet and U-Net models, demonstrating strong generalization, especially on apical 2-chamber (A2C) images (fine-tuned SAM vs. EchoNet: CAMUS-A2C: DSC 0.891 {+/-} 0.040 vs. 0.752 {+/-} 0.196, p<0.0001) and POCUS (DSC 0.857 {+/-} 0.047 vs. 0.667 {+/-} 0.279, p<0.0001). Additionally, SAM-enhanced workflow reduced annotation time by 50% (11.6 {+/-} 4.5 sec vs. 5.7 {+/-} 1.7 sec, p<0.0001) while maintaining segmentation quality. We demonstrated an effective strategy for fine-tuning a vision foundation model for enhancing clinical workflow efficiency and supporting human-AI collaboration.

CheX-DS: Improving Chest X-ray Image Classification with Ensemble Learning Based on DenseNet and Swin Transformer

Xinran Li, Yu Liu, Xiujuan Xu, Xiaowei Zhao

arxiv logopreprintMay 16 2025
The automatic diagnosis of chest diseases is a popular and challenging task. Most current methods are based on convolutional neural networks (CNNs), which focus on local features while neglecting global features. Recently, self-attention mechanisms have been introduced into the field of computer vision, demonstrating superior performance. Therefore, this paper proposes an effective model, CheX-DS, for classifying long-tail multi-label data in the medical field of chest X-rays. The model is based on the excellent CNN model DenseNet for medical imaging and the newly popular Swin Transformer model, utilizing ensemble deep learning techniques to combine the two models and leverage the advantages of both CNNs and Transformers. The loss function of CheX-DS combines weighted binary cross-entropy loss with asymmetric loss, effectively addressing the issue of data imbalance. The NIH ChestX-ray14 dataset is selected to evaluate the model's effectiveness. The model outperforms previous studies with an excellent average AUC score of 83.76\%, demonstrating its superior performance.

From Embeddings to Accuracy: Comparing Foundation Models for Radiographic Classification

Xue Li, Jameson Merkow, Noel C. F. Codella, Alberto Santamaria-Pang, Naiteek Sangani, Alexander Ersoy, Christopher Burt, John W. Garrett, Richard J. Bruce, Joshua D. Warner, Tyler Bradshaw, Ivan Tarapov, Matthew P. Lungren, Alan B. McMillan

arxiv logopreprintMay 16 2025
Foundation models, pretrained on extensive datasets, have significantly advanced machine learning by providing robust and transferable embeddings applicable to various domains, including medical imaging diagnostics. This study evaluates the utility of embeddings derived from both general-purpose and medical domain-specific foundation models for training lightweight adapter models in multi-class radiography classification, focusing specifically on tube placement assessment. A dataset comprising 8842 radiographs classified into seven distinct categories was employed to extract embeddings using six foundation models: DenseNet121, BiomedCLIP, Med-Flamingo, MedImageInsight, Rad-DINO, and CXR-Foundation. Adapter models were subsequently trained using classical machine learning algorithms. Among these combinations, MedImageInsight embeddings paired with an support vector machine adapter yielded the highest mean area under the curve (mAUC) at 93.8%, followed closely by Rad-DINO (91.1%) and CXR-Foundation (89.0%). In comparison, BiomedCLIP and DenseNet121 exhibited moderate performance with mAUC scores of 83.0% and 81.8%, respectively, whereas Med-Flamingo delivered the lowest performance at 75.1%. Notably, most adapter models demonstrated computational efficiency, achieving training within one minute and inference within seconds on CPU, underscoring their practicality for clinical applications. Furthermore, fairness analyses on adapters trained on MedImageInsight-derived embeddings indicated minimal disparities, with gender differences in performance within 2% and standard deviations across age groups not exceeding 3%. These findings confirm that foundation model embeddings-especially those from MedImageInsight-facilitate accurate, computationally efficient, and equitable diagnostic classification using lightweight adapters for radiographic image analysis.

GOUHFI: a novel contrast- and resolution-agnostic segmentation tool for Ultra-High Field MRI

Marc-Antoine Fortin, Anne Louise Kristoffersen, Michael Staff Larsen, Laurent Lamalle, Ruediger Stirnberg, Paal Erik Goa

arxiv logopreprintMay 16 2025
Recently, Ultra-High Field MRI (UHF-MRI) has become more available and one of the best tools to study the brain. One common step in quantitative neuroimaging is the brain segmentation. However, the differences between UHF-MRI and 1.5-3T images are such that the automatic segmentation techniques optimized at these field strengths usually produce unsatisfactory segmentation results for UHF images. It has been particularly challenging to perform quantitative analyses as typically done with 1.5-3T data, considerably limiting the potential of UHF-MRI. Hence, we propose a novel Deep Learning (DL)-based segmentation technique called GOUHFI: Generalized and Optimized segmentation tool for Ultra-High Field Images, designed to segment UHF images of various contrasts and resolutions. For training, we used a total of 206 label maps from four datasets acquired at 3T, 7T and 9.4T. In contrast to most DL strategies, we used a previously proposed domain randomization approach, where synthetic images generated from the label maps were used for training a 3D U-Net. GOUHFI was tested on seven different datasets and compared to techniques like FastSurferVINN and CEREBRUM-7T. GOUHFI was able to the segment six contrasts and seven resolutions tested at 3T, 7T and 9.4T. Average Dice-Sorensen Similarity Coefficient (DSC) scores of 0.87, 0.84, 0.91 were computed against the ground truth segmentations at 3T, 7T and 9.4T. Moreover, GOUHFI demonstrated impressive resistance to the typical inhomogeneities observed at UHF-MRI, making it a new powerful segmentation tool that allows to apply the usual quantitative analysis pipelines also at UHF. Ultimately, GOUHFI is a promising new segmentation tool, being the first of its kind proposing a contrast- and resolution-agnostic alternative for UHF-MRI, making it the forthcoming alternative for neuroscientists working with UHF-MRI or even lower field strengths.

Automated Real-time Assessment of Intracranial Hemorrhage Detection AI Using an Ensembled Monitoring Model (EMM)

Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie A. Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay S. Chaudhari, David B. Larson

arxiv logopreprintMay 16 2025
Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM successfully categorizes confidence in the AI-generated prediction, suggesting different actions and helping improve the overall performance of AI tools to ultimately reduce cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights

Shijun Liang, Ismail R. Alkhouri, Siddhant Gautam, Qing Qu, Saiprasad Ravishankar

arxiv logopreprintMay 16 2025
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.

Diff-Unfolding: A Model-Based Score Learning Framework for Inverse Problems

Yuanhao Wang, Shirin Shoushtari, Ulugbek S. Kamilov

arxiv logopreprintMay 16 2025
Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.

Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach

Shuo Wang, Tong Ren, Nan Cheng, Rong Wang, Li Zhang

arxiv logopreprintMay 16 2025
Background and Objective: Precise preoperative planning and effective physician training for coronary interventions are increasingly important. Despite advances in medical imaging technologies, transforming static or limited dynamic imaging data into comprehensive dynamic cardiac models remains challenging. Existing training systems lack accurate simulation of cardiac physiological dynamics. This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA, integrating digital twin technology, computer vision, and physical model manufacturing to provide precise, personalized tools for interventional cardiology. Methods: Using 4D-CTA data from a 60-year-old female with three-vessel coronary stenosis, we segmented cardiac chambers and coronary arteries, constructed dynamic models, and implemented skeletal skinning weight computation to simulate vessel deformation across 20 cardiac phases. Transparent vascular physical models were manufactured using medical-grade silicone. We developed cardiac output analysis and virtual angiography systems, implemented guidewire 3D reconstruction using binocular stereo vision, and evaluated the system through angiography validation and CABG training applications. Results: Morphological consistency between virtual and real angiography reached 80.9%. Dice similarity coefficients for guidewire motion ranged from 0.741-0.812, with mean trajectory errors below 1.1 mm. The transparent model demonstrated advantages in CABG training, allowing direct visualization while simulating beating heart challenges. Conclusion: Our patient-specific digital-physical twin approach effectively reproduces both anatomical structures and dynamic characteristics of coronary vasculature, offering a dynamic environment with visual and tactile feedback valuable for education and clinical planning.

Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers

Aneesh Rangnekar, Nikhil Mankuzhy, Jonas Willmann, Chloe Choi, Abraham Wu, Maria Thor, Andreas Rimner, Harini Veeraraghavan

arxiv logopreprintMay 16 2025
AI automated segmentations for radiation treatment planning (RTP) can deteriorate when applied in clinical cases with different characteristics than training dataset. Hence, we refined a pretrained transformer into a hybrid transformer convolutional network (HTN) to segment cardiac substructures lung and breast cancer patients acquired with varying imaging contrasts and patient scan positions. Cohort I, consisting of 56 contrast-enhanced (CECT) and 124 non-contrast CT (NCCT) scans from patients with non-small cell lung cancers acquired in supine position, was used to create oracle with all 180 training cases and balanced (CECT: 32, NCCT: 32 training) HTN models. Models were evaluated on a held-out validation set of 60 cohort I patients and 66 patients with breast cancer from cohort II acquired in supine (n=45) and prone (n=21) positions. Accuracy was measured using DSC, HD95, and dose metrics. Publicly available TotalSegmentator served as the benchmark. The oracle and balanced models were similarly accurate (DSC Cohort I: 0.80 \pm 0.10 versus 0.81 \pm 0.10; Cohort II: 0.77 \pm 0.13 versus 0.80 \pm 0.12), outperforming TotalSegmentator. The balanced model, using half the training cases as oracle, produced similar dose metrics as manual delineations for all cardiac substructures. This model was robust to CT contrast in 6 out of 8 substructures and patient scan position variations in 5 out of 8 substructures and showed low correlations of accuracy to patient size and age. A HTN demonstrated robustly accurate (geometric and dose metrics) cardiac substructures segmentation from CTs with varying imaging and patient characteristics, one key requirement for clinical use. Moreover, the model combining pretraining with balanced distribution of NCCT and CECT scans was able to provide reliably accurate segmentations under varied conditions with far fewer labeled datasets compared to an oracle model.
Page 46 of 54531 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.