Sort by:
Page 36 of 55546 results

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Distance Transform Guided Mixup for Alzheimer's Detection

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Alzheimer's detection efforts aim to develop accurate models for early disease diagnosis. Significant advances have been achieved with convolutional neural networks and vision transformer based approaches. However, medical datasets suffer heavily from class imbalance, variations in imaging protocols, and limited dataset diversity, which hinder model generalization. To overcome these challenges, this study focuses on single-domain generalization by extending the well-known mixup method. The key idea is to compute the distance transform of MRI scans, separate them spatially into multiple layers and then combine layers stemming from distinct samples to produce augmented images. The proposed approach generates diverse data while preserving the brain's structure. Experimental results show generalization performance improvement across both ADNI and AIBL datasets.

Look & Mark: Leveraging Radiologist Eye Fixations and Bounding boxes in Multimodal Large Language Models for Chest X-ray Report Generation

Yunsoo Kim, Jinge Wu, Su-Hwan Kim, Pardeep Vasudev, Jiashu Shen, Honghan Wu

arxiv logopreprintMay 28 2025
Recent advancements in multimodal Large Language Models (LLMs) have significantly enhanced the automation of medical image analysis, particularly in generating radiology reports from chest X-rays (CXR). However, these models still suffer from hallucinations and clinically significant errors, limiting their reliability in real-world applications. In this study, we propose Look & Mark (L&M), a novel grounding fixation strategy that integrates radiologist eye fixations (Look) and bounding box annotations (Mark) into the LLM prompting framework. Unlike conventional fine-tuning, L&M leverages in-context learning to achieve substantial performance gains without retraining. When evaluated across multiple domain-specific and general-purpose models, L&M demonstrates significant gains, including a 1.2% improvement in overall metrics (A.AVG) for CXR-LLaVA compared to baseline prompting and a remarkable 9.2% boost for LLaVA-Med. General-purpose models also benefit from L&M combined with in-context learning, with LLaVA-OV achieving an 87.3% clinical average performance (C.AVG)-the highest among all models, even surpassing those explicitly trained for CXR report generation. Expert evaluations further confirm that L&M reduces clinically significant errors (by 0.43 average errors per report), such as false predictions and omissions, enhancing both accuracy and reliability. These findings highlight L&M's potential as a scalable and efficient solution for AI-assisted radiology, paving the way for improved diagnostic workflows in low-resource clinical settings.

High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models

Tristan S. W. Stevens, Oisín Nolan, Oudom Somphone, Jean-Luc Robert, Ruud J. G. van Sloun

arxiv logopreprintMay 28 2025
Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.

Patch-based Reconstruction for Unsupervised Dynamic MRI using Learnable Tensor Function with Implicit Neural Representation

Yuanyuan Liu, Yuanbiao Yang, Zhuo-Xu Cui, Qingyong Zhu, Jing Cheng, Congcong Liu, Jinwen Xie, Jingran Xu, Hairong Zheng, Dong Liang, Yanjie Zhu

arxiv logopreprintMay 28 2025
Dynamic MRI plays a vital role in clinical practice by capturing both spatial details and dynamic motion, but its high spatiotemporal resolution is often limited by long scan times. Deep learning (DL)-based methods have shown promising performance in accelerating dynamic MRI. However, most existing algorithms rely on large fully-sampled datasets for training, which are difficult to acquire. Recently, implicit neural representation (INR) has emerged as a powerful scan-specific paradigm for accelerated MRI, which models signals as a continuous function over spatiotemporal coordinates. Although this approach achieves efficient continuous modeling of dynamic images and robust reconstruction, it faces challenges in recovering fine details and increasing computational demands for high dimensional data representation. To enhance both efficiency and reconstruction quality, we propose TenF-INR, a novel patch-based unsupervised framework that employs INR to model bases of tensor decomposition, enabling efficient and accurate modeling of dynamic MR images with learnable tensor functions. By exploiting strong correlations in similar spatial image patches and in the temporal direction, TenF-INR enforces multidimensional low-rankness and implements patch-based reconstruction with the benefits of continuous modeling. We compare TenF-INR with state-of-the-art methods, including supervised DL methods and unsupervised approaches. Experimental results demonstrate that TenF-INR achieves high acceleration factors up to 21, outperforming all comparison methods in image quality, temporal fidelity, and quantitative metrics, even surpassing the supervised methods.

MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network

Ruiguo Yu, Yiyang Zhang, Yuan Tian, Yujie Diao, Di Jin, Witold Pedrycz

arxiv logopreprintMay 28 2025
Medical image segmentation methods generally assume that the process from medical image to segmentation is unbiased, and use neural networks to establish conditional probability models to complete the segmentation task. This assumption does not consider confusion factors, which can affect medical images, such as complex anatomical variations and imaging modality limitations. Confusion factors obfuscate the relevance and causality of medical image segmentation, leading to unsatisfactory segmentation results. To address this issue, we propose a multi-causal aware modeling backdoor-intervention optimization (MAMBO-NET) network for medical image segmentation. Drawing insights from causal inference, MAMBO-NET utilizes self-modeling with multi-Gaussian distributions to fit the confusion factors and introduce causal intervention into the segmentation process. Moreover, we design appropriate posterior probability constraints to effectively train the distributions of confusion factors. For the distributions to effectively guide the segmentation and mitigate and eliminate the Impact of confusion factors on the segmentation, we introduce classical backdoor intervention techniques and analyze their feasibility in the segmentation task. To evaluate the effectiveness of our approach, we conducted extensive experiments on five medical image datasets. The results demonstrate that our method significantly reduces the influence of confusion factors, leading to enhanced segmentation accuracy.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Multi-class classification of central and non-central geographic atrophy using Optical Coherence Tomography

Siraz, S., Kamanda, H., Gholami, S., Nabil, A. S., Ong, S. S. Y., Alam, M. N.

medrxiv logopreprintMay 28 2025
PurposeTo develop and validate deep learning (DL)-based models for classifying geographic atrophy (GA) subtypes using Optical Coherence Tomography (OCT) scans across four clinical classification tasks. DesignRetrospective comparative study evaluating three DL architectures on OCT data with two experimental approaches. Subjects455 OCT volumes (258 Central GA [CGA], 74 Non-Central GA [NCGA], 123 no GA [NGA]) from 104 patients at Atrium Health Wake Forest Baptist. For GA versus age-related macular degeneration (AMD) classification, we supplemented our dataset with AMD cases from four public repositories. MethodsWe implemented ResNet50, MobileNetV2, and Vision Transformer (ViT-B/16) architectures using two approaches: (1) utilizing all B-scans within each OCT volume and (2) selectively using B-scans containing foveal regions. Models were trained using transfer learning, standardized data augmentation, and patient-level data splitting (70:15:15 ratio) for training, validation, and testing. Main Outcome MeasuresArea under the receiver operating characteristic curve (AUC-ROC), F1 score, and accuracy for each classification task (CGA vs. NCGA, CGA vs. NCGA vs. NGA, GA vs. NGA, and GA vs. other forms of AMD). ResultsViT-B/16 consistently outperformed other architectures across all classification tasks. For CGA versus NCGA classification, ViT-B/16 achieved an AUC-ROC of 0.728{+/-}0.083 and accuracy of 0.831{+/-}0.006 using selective B-scans. In GA versus NGA classification, ViT-B/16 attained an AUC-ROC of 0.950{+/-}0.002 and accuracy of 0.873{+/-}0.012 with selective B-scans. All models demonstrated exceptional performance in distinguishing GA from other AMD forms (AUC-ROC>0.998). For multi-class classification, ViT-B/16 achieved an AUC-ROC of 0.873{+/-}0.003 and accuracy of 0.751{+/-}0.002 using selective B-scans. ConclusionsOur DL approach successfully classifies GA subtypes with clinically relevant accuracy. ViT-B/16 demonstrates superior performance due to its ability to capture spatial relationships between atrophic regions and the foveal center. Focusing on B-scans containing foveal regions improved diagnostic accuracy while reducing computational requirements, better aligning with clinical practice workflows.

Prostate Cancer Screening with Artificial Intelligence-Enhanced Micro-Ultrasound: A Comparative Study with Traditional Methods

Muhammad Imran, Wayne G. Brisbane, Li-Ming Su, Jason P. Joseph, Wei Shao

arxiv logopreprintMay 27 2025
Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.

Decoding Breast Cancer in X-ray Mammograms: A Multi-Parameter Approach Using Fractals, Multifractals, and Structural Disorder Analysis

Santanu Maity, Mousa Alrubayan, Prabhakar Pradhan

arxiv logopreprintMay 27 2025
We explored the fractal and multifractal characteristics of breast mammogram micrographs to identify quantitative biomarkers associated with breast cancer progression. In addition to conventional fractal and multifractal analyses, we employed a recently developed fractal-functional distribution method, which transforms fractal measures into Gaussian distributions for more robust statistical interpretation. Given the sparsity of mammogram intensity data, we also analyzed how variations in intensity thresholds, used for binary transformations of the fractal dimension, follow unique trajectories that may serve as novel indicators of disease progression. Our findings demonstrate that fractal, multifractal, and fractal-functional parameters effectively differentiate between benign and cancerous tissue. Furthermore, the threshold-dependent behavior of intensity-based fractal measures presents distinct patterns in cancer cases. To complement these analyses, we applied the Inverse Participation Ratio (IPR) light localization technique to quantify structural disorder at the microscopic level. This multi-parametric approach, integrating spatial complexity and structural disorder metrics, offers a promising framework for enhancing the sensitivity and specificity of breast cancer detection.
Page 36 of 55546 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.