Sort by:
Page 33 of 1071069 results

A Tutorial on MRI Reconstruction: From Modern Methods to Clinical Implications

Tolga Çukur, Salman U. H. Dar, Valiyeh Ansarian Nezhad, Yohan Jun, Tae Hyung Kim, Shohei Fujita, Berkin Bilgic

arxiv logopreprintJul 22 2025
MRI is an indispensable clinical tool, offering a rich variety of tissue contrasts to support broad diagnostic and research applications. Clinical exams routinely acquire multiple structural sequences that provide complementary information for differential diagnosis, while research protocols often incorporate advanced functional, diffusion, spectroscopic, and relaxometry sequences to capture multidimensional insights into tissue structure and composition. However, these capabilities come at the cost of prolonged scan times, which reduce patient throughput, increase susceptibility to motion artifacts, and may require trade-offs in image quality or diagnostic scope. Over the last two decades, advances in image reconstruction algorithms--alongside improvements in hardware and pulse sequence design--have made it possible to accelerate acquisitions while preserving diagnostic quality. Central to this progress is the ability to incorporate prior information to regularize the solutions to the reconstruction problem. In this tutorial, we overview the basics of MRI reconstruction and highlight state-of-the-art approaches, beginning with classical methods that rely on explicit hand-crafted priors, and then turning to deep learning methods that leverage a combination of learned and crafted priors to further push the performance envelope. We also explore the translational aspects and eventual clinical implications of these methods. We conclude by discussing future directions to address remaining challenges in MRI reconstruction. The tutorial is accompanied by a Python toolbox (https://github.com/tutorial-MRI-recon/tutorial) to demonstrate select methods discussed in the article.

Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation

Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou

arxiv logopreprintJul 22 2025
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks

Marcel Kleinmann, Shashank Agnihotri, Margret Keuper

arxiv logopreprintJul 22 2025
Faithfulness and interpretability are essential for deploying deep neural networks (DNNs) in safety-critical domains such as medical imaging. B-cos networks offer a promising solution by replacing standard linear layers with a weight-input alignment mechanism, producing inherently interpretable, class-specific explanations without post-hoc methods. While maintaining diagnostic performance competitive with state-of-the-art DNNs, standard B-cos models suffer from severe aliasing artifacts in their explanation maps, making them unsuitable for clinical use where clarity is essential. Additionally, the original B-cos formulation is limited to multi-class settings, whereas chest X-ray analysis often requires multi-label classification due to co-occurring abnormalities. In this work, we address both limitations: (1) we introduce anti-aliasing strategies using FLCPooling (FLC) and BlurPool (BP) to significantly improve explanation quality, and (2) we extend B-cos networks to support multi-label classification. Our experiments on chest X-ray datasets demonstrate that the modified $\text{B-cos}_\text{FLC}$ and $\text{B-cos}_\text{BP}$ preserve strong predictive performance while providing faithful and artifact-free explanations suitable for clinical application in multi-label settings. Code available at: $\href{https://github.com/mkleinma/B-cos-medical-paper}{GitHub repository}$.

MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation

Nand Kumar Yadav, Rodrigue Rizk, Willium WC Chen, KC

arxiv logopreprintJul 22 2025
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis

Xiaojiao Xiao, Qinmin Vivian Hu, Guanghui Wang

arxiv logopreprintJul 22 2025
Medical image synthesis plays a crucial role in clinical workflows, addressing the common issue of missing imaging modalities due to factors such as extended scan times, scan corruption, artifacts, patient motion, and intolerance to contrast agents. The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff), which employs a multi-scale hierarchical approach for more detailed control over synthesizing high-quality images across different resolutions and layers. Specifically, this model utilizes randomly multi-scale high-proportion masks to speed up diffusion model training, and balances detail fidelity and overall structure. The integration of a Transformer-based Diffusion model process incorporates cross-granularity regularization, modeling the mutual information consistency across each granularity's latent spaces, thereby enhancing pixel-level perceptual accuracy. Comprehensive experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), highlighting its capability to produce high-quality synthesized images with excellent structural integrity. Ablation studies further confirm the contributions of each component. Furthermore, the PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods. The source code is available at https://github.com/xiaojiao929/PHMDiff

Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement

Cedric Zöllner, Simon Reiß, Alexander Jaus, Amroalalaa Sholi, Ralf Sodian, Rainer Stiefelhagen

arxiv logopreprintJul 22 2025
When preoperative planning for surgeries is conducted on the basis of medical images, artificial intelligence methods can support medical doctors during assessment. In this work, we consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks, that may be supported via semantic segmentation models by making relevant anatomical structures measurable in computed tomography scans. We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans. Furthermore, we propose an adaptation to the loss function in training these segmentation models and through this achieve a +1.27% Dice increase in performance. Our fine-grained TAVR-relevant pseudo-labels and the computed tomography scans we build upon are available at https://doi.org/10.5281/zenodo.16274176.

Robust Noisy Pseudo-label Learning for Semi-supervised Medical Image Segmentation Using Diffusion Model

Lin Xi, Yingliang Ma, Cheng Wang, Sandra Howell, Aldo Rinaldi, Kawal S. Rhode

arxiv logopreprintJul 22 2025
Obtaining pixel-level annotations in the medical domain is both expensive and time-consuming, often requiring close collaboration between clinical experts and developers. Semi-supervised medical image segmentation aims to leverage limited annotated data alongside abundant unlabeled data to achieve accurate segmentation. However, existing semi-supervised methods often struggle to structure semantic distributions in the latent space due to noise introduced by pseudo-labels. In this paper, we propose a novel diffusion-based framework for semi-supervised medical image segmentation. Our method introduces a constraint into the latent structure of semantic labels during the denoising diffusion process by enforcing prototype-based contrastive consistency. Rather than explicitly delineating semantic boundaries, the model leverages class prototypes centralized semantic representations in the latent space as anchors. This strategy improves the robustness of dense predictions, particularly in the presence of noisy pseudo-labels. We also introduce a new publicly available benchmark: Multi-Object Segmentation in X-ray Angiography Videos (MOSXAV), which provides detailed, manually annotated segmentation ground truth for multiple anatomical structures in X-ray angiography videos. Extensive experiments on the EndoScapes2023 and MOSXAV datasets demonstrate that our method outperforms state-of-the-art medical image segmentation approaches under the semi-supervised learning setting. This work presents a robust and data-efficient diffusion model that offers enhanced flexibility and strong potential for a wide range of clinical applications.

SFNet: A Spatio-Frequency Domain Deep Learning Network for Efficient Alzheimer's Disease Diagnosis

Xinyue Yang, Meiliang Liu, Yunfang Xu, Xiaoxiao Yang, Zhengye Si, Zijin Li, Zhiwen Zhao

arxiv logopreprintJul 22 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that predominantly affects the elderly population and currently has no cure. Magnetic Resonance Imaging (MRI), as a non-invasive imaging technique, is essential for the early diagnosis of AD. MRI inherently contains both spatial and frequency information, as raw signals are acquired in the frequency domain and reconstructed into spatial images via the Fourier transform. However, most existing AD diagnostic models extract features from a single domain, limiting their capacity to fully capture the complex neuroimaging characteristics of the disease. While some studies have combined spatial and frequency information, they are mostly confined to 2D MRI, leaving the potential of dual-domain analysis in 3D MRI unexplored. To overcome this limitation, we propose Spatio-Frequency Network (SFNet), the first end-to-end deep learning framework that simultaneously leverages spatial and frequency domain information to enhance 3D MRI-based AD diagnosis. SFNet integrates an enhanced dense convolutional network to extract local spatial features and a global frequency module to capture global frequency-domain representations. Additionally, a novel multi-scale attention module is proposed to further refine spatial feature extraction. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ANDI) dataset demonstrate that SFNet outperforms existing baselines and reduces computational overhead in classifying cognitively normal (CN) and AD, achieving an accuracy of 95.1%.

A Hybrid CNN-VSSM model for Multi-View, Multi-Task Mammography Analysis: Robust Diagnosis with Attention-Based Fusion

Yalda Zafari, Roaa Elalfy, Mohamed Mabrok, Somaya Al-Maadeed, Tamer Khattab, Essam A. Rashed

arxiv logopreprintJul 22 2025
Early and accurate interpretation of screening mammograms is essential for effective breast cancer detection, yet it remains a complex challenge due to subtle imaging findings and diagnostic ambiguity. Many existing AI approaches fall short by focusing on single view inputs or single-task outputs, limiting their clinical utility. To address these limitations, we propose a novel multi-view, multitask hybrid deep learning framework that processes all four standard mammography views and jointly predicts diagnostic labels and BI-RADS scores for each breast. Our architecture integrates a hybrid CNN VSSM backbone, combining convolutional encoders for rich local feature extraction with Visual State Space Models (VSSMs) to capture global contextual dependencies. To improve robustness and interpretability, we incorporate a gated attention-based fusion module that dynamically weights information across views, effectively handling cases with missing data. We conduct extensive experiments across diagnostic tasks of varying complexity, benchmarking our proposed hybrid models against baseline CNN architectures and VSSM models in both single task and multi task learning settings. Across all tasks, the hybrid models consistently outperform the baselines. In the binary BI-RADS 1 vs. 5 classification task, the shared hybrid model achieves an AUC of 0.9967 and an F1 score of 0.9830. For the more challenging ternary classification, it attains an F1 score of 0.7790, while in the five-class BI-RADS task, the best F1 score reaches 0.4904. These results highlight the effectiveness of the proposed hybrid framework and underscore both the potential and limitations of multitask learning for improving diagnostic performance and enabling clinically meaningful mammography analysis.

Harmonization in Magnetic Resonance Imaging: A Survey of Acquisition, Image-level, and Feature-level Methods

Qinqin Yang, Firoozeh Shomal-Zadeh, Ali Gholipour

arxiv logopreprintJul 22 2025
Modern medical imaging technologies have greatly advanced neuroscience research and clinical diagnostics. However, imaging data collected across different scanners, acquisition protocols, or imaging sites often exhibit substantial heterogeneity, known as "batch effects" or "site effects". These non-biological sources of variability can obscure true biological signals, reduce reproducibility and statistical power, and severely impair the generalizability of learning-based models across datasets. Image harmonization aims to eliminate or mitigate such site-related biases while preserving meaningful biological information, thereby improving data comparability and consistency. This review provides a comprehensive overview of key concepts, methodological advances, publicly available datasets, current challenges, and future directions in the field of medical image harmonization, with a focus on magnetic resonance imaging (MRI). We systematically cover the full imaging pipeline, and categorize harmonization approaches into prospective acquisition and reconstruction strategies, retrospective image-level and feature-level methods, and traveling-subject-based techniques. Rather than providing an exhaustive survey, we focus on representative methods, with particular emphasis on deep learning-based approaches. Finally, we summarize the major challenges that remain and outline promising avenues for future research.
Page 33 of 1071069 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.