Sort by:
Page 3 of 768 results

Cross-dataset Evaluation of Dementia Longitudinal Progression Prediction Models

Zhang, C., An, L., Wulan, N., Nguyen, K.-N., Orban, C., Chen, P., Chen, C., Zhou, J. H., Liu, K., Yeo, B. T. T., Alzheimer's Disease Neuroimaging Initiative,, Australian Imaging Biomarkers and Lifestyle Study of Aging,

medrxiv logopreprintJun 11 2025
IntroductionAccurately predicting Alzheimers Disease (AD) progression is useful for clinical care. The 2019 TADPOLE (The Alzheimers Disease Prediction Of Longitudinal Evolution) challenge evaluated 92 algorithms from 33 teams worldwide. Unlike typical clinical prediction studies, TADPOLE accommodates (1) variable number of observed timepoints across patients, (2) missing data across modalities and visits, and (3) prediction over an open-ended time horizon, which better reflects real-world data. However, TADPOLE only used the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset, so how well top algorithms generalize to other cohorts remains unclear. MethodsWe tested five algorithms in three external datasets covering 2,312 participants and 13,200 timepoints. The algorithms included FROG, the overall TADPOLE winner, which utilized a unique Longitudinal-to-Cross-sectional (L2C) transformation to convert variable-length longitudinal histories into feature vectors of the same length across participants (i.e., same-length feature vectors). We also considered two FROG variants. One variant unified all XGBoost models from the original FROG with a single feedforward neural network (FNN), which we referred to as L2C-FNN. We also included minimal recurrent neural networks (MinimalRNN), which was ranked second at publication time, as well as AD Course Map (AD-Map), which outperformed MinimalRNN at publication time. All five models - three FROG variants, MinimalRNN and AD-Map - were trained on ADNI and tested on the external datasets. ResultsL2C-FNN performed the best overall. In the case of predicting cognition and ventricle volume, L2C-FNN and AD-Map were the best. For clinical diagnosis prediction, L2C-FNN was the best, while AD-Map was the worst. L2C-FNN also maintained its edge over other models, regardless of the number of observed timepoints, and regardless of the prediction horizon from 0 to 6 years into the future. ConclusionsL2C-FNN shows strong potential for both short-term and long-term dementia progression prediction. Pretrained ADNI models are available: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Zhang2025_L2CFNN.

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study

Yi, J., Patel, K., Miller, R. J., Marcinkiewicz, A. M., Shanbhag, A., Hijazi, W., Dharmavaram, N., Lemley, M., Zhou, J., Zhang, W., Liang, J. X., Ramirez, G., Builoff, V., Slipczuk, L., Travin, M., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R., Al-Mallah, M., Ruddy, T. D., Einstein, A. J., Feher, A., Miller, E. J., Acampa, W., Knight, S., Le, V., Mason, S., Calsavara, V. F., Chareonthaitawee, P., Wopperer, S., Kwan, A. C., Wang, L., Berman, D. S., Dey, D., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 11 2025
BackgroundHepatic steatosis (HS) is a common cardiometabolic risk factor frequently present but under- diagnosed in patients with suspected or known coronary artery disease. We used artificial intelligence (AI) to automatically quantify hepatic tissue measures for identifying HS from CT attenuation correction (CTAC) scans during myocardial perfusion imaging (MPI) and evaluate their added prognostic value for all-cause mortality prediction. MethodsThis study included 27039 consecutive patients [57% male] with MPI scans from nine sites. We used an AI model to segment liver and spleen on low dose CTAC scans and quantify the liver measures, and the difference of liver minus spleen (LmS) measures. HS was defined as mean liver attenuation < 40 Hounsfield units (HU) or LmS attenuation < -10 HU. Additionally, we used seven sites to develop an AI liver risk index (LIRI) for comprehensive hepatic assessment by integrating the hepatic measures and two external sites to validate its improved prognostic value and generalizability for all-cause mortality prediction over HS. FindingsMedian (interquartile range [IQR]) age was 67 [58, 75] years and body mass index (BMI) was 29.5 [25.5, 34.7] kg/m2, with diabetes in 8950 (33%) patients. The algorithm identified HS in 6579 (24%) patients. During median [IQR] follow-up of 3.58 [1.86, 5.15] years, 4836 (18%) patients died. HS was associated with increased mortality risk overall (adjusted hazard ratio (HR): 1.14 [1.05, 1.24], p=0.0016) and in subpopulations. LIRI provided higher prognostic value than HS after adjustments overall (adjusted HR 1.5 [1.32, 1.69], p<0.0001 vs HR 1.16 [1.02, 1.31], p=0.0204) and in subpopulations. InterpretationsAI-based hepatic measures automatically identify HS from CTAC scans in patients undergoing MPI without additional radiation dose or physician interaction. Integrated liver assessment combining multiple hepatic imaging measures improved risk stratification for all-cause mortality. FundingNational Heart, Lung, and Blood Institute/National Institutes of Health. Research in context Evidence before this studyExisting studies show that fully automated hepatic quantification analysis from chest computed tomography (CT) scans is feasible. While hepatic measures show significant potential for improving risk stratification and patient management, CT attenuation correction (CTAC) scans from patients undergoing myocardial perfusion imaging (MPI) have rarely been utilized for concurrent and automated volumetric hepatic analysis beyond its current utilization for attenuation correction and coronary artery calcium burden assessment. We conducted a literature review on PubMed and Google Scholar on April 1st, 2025, using the following keywords: ("liver" OR "hepatic") AND ("quantification" OR "measure") AND ("risk stratification" OR "survival analysis" OR "prognosis" OR "prognostic prediction") AND ("CT" OR "computed tomography"). Previous studies have established approaches for the identification of hepatic steatosis (HS) and its prognostic value in various small- scale cohorts using either invasive biopsy or non-invasive imaging approaches. However, CT-based non- invasive imaging, existing research predominantly focuses on manual region-of-interest (ROI)-based hepatic quantification from selected CT slices or on identifying hepatic steatosis without comprehensive prognostic assessment in large-scale and multi-site cohorts, which hinders the association evaluation of hepatic steatosis for risk stratification in clinical routine with less precise estimates, weak statistical reliability, and limited subgroup analysis to assess bias effects. No existing studies investigated the prognostic value of hepatic steatosis measured in consecutive patients undergoing MPI. These patients usually present with multiple cardiovascular risk factors such as hypertension, dyslipidemia, diabetes and family history of coronary disease. Whether hepatic measures could provide added prognostic value over existing cardiometabolic factors is unknown. Furthermore, despite the diverse hepatic measures on CT in existing literature, integrated AI-based assessment has not been investigated before though it may improve the risk stratification further over HS. Lastly, previous research relied on dedicated CT scans performed for screening purposes. CTAC scans obtained routinely with MPI had never been utilized for automated HS detection and prognostic evaluation, despite being readily available at no additional cost or radiation exposure. Added value of this studyIn this multi-center (nine sites) international (three countries) study of 27039 consecutive patients undergoing myocardial perfusion imaging (MPI) with PET or SPECT, we used an innovative artificial intelligence (AI)- based approach for automatically segmenting the entire liver and spleen volumes from low-dose ungated CT attenuation correction (CTAC) scans acquired during MPI, followed by the identification of hepatic steatosis. We evaluated the added prognostic value of several key hepatic metrics--liver measures (mean attenuation, coefficient of variation (CoV), entropy, and standard deviation), and similar measures for the difference of liver minus spleen (LmS)--derived from volumetric quantification of CTAC scans with adjustment for existing clinical and MPI variables. A HS imaging criterion (HSIC: a patient has moderate or severe hepatic steatosis if the mean liver attenuation is < 40 Hounsfield unit (HU) or the difference of liver mean attenuation and spleen mean attenuation is < -10 HU) was used to detect HS. These hepatic metrics were assessed for their ability to predict all-cause mortality in a large-scale and multi-center patient cohort. Additionally, we developed and validated an eXtreme Gradient Boosting decision tree model for integrated liver assessment and risk stratification by combining the hepatic metrics with the demographic variables to derive a liver risk index (LIRI). Our results demonstrated strong associations between the hepatic metrics and all-cause mortality, even after adjustment for clinical variables, myocardial perfusion, and atherosclerosis biomarkers. Our results revealed significant differences in the association of HS with mortality in different sex, age, and race subpopulations. Similar differences were also observed in various chronic disease subpopulations such as obese and diabetic subpopulations. These results highlighted the modifying effects of various patient characteristics, partially accounting for the inconsistent association observed in existing studies. Compared with individual hepatic measures, LIRI showed significant improvement compared to HSIC-based HS in mortality prediction in external testing. All these demonstrate the feasibility of HS detection and integrated liver assessment from cardiac low-dose CT scans from MPI, which is also expected to apply for generic chest CT scans which have coverage of liver and spleen while prior studies used dedicated abdominal CT scans for such purposes. Implications of all the available evidenceRoutine point-of-care analysis of hepatic quantification can be seamlessly integrated into all MPI using CTAC scans to noninvasively identify HS at no additional cost or radiation exposure. The automatically derived hepatic metrics enhance risk stratification by providing additional prognostic value beyond existing clinical and imaging factors, and the LIRI enables comprehensive assessment of liver and further improves risk stratification and patient management.

Lack of children in public medical imaging data points to growing age bias in biomedical AI

Hua, S. B. Z., Heller, N., He, P., Towbin, A. J., Chen, I., Lu, A., Erdman, L.

medrxiv logopreprintJun 7 2025
Artificial intelligence (AI) is rapidly transforming healthcare, but its benefits are not reaching all patients equally. Children remain overlooked with only 17% of FDA-approved medical AI devices labeled for pediatric use. In this work, we demonstrate that this exclusion may stem from a fundamental data gap. Our systematic review of 181 public medical imaging datasets reveals that children represent just under 1% of available data, while the majority of machine learning imaging conference papers we surveyed utilized publicly available data for methods development. Much like systematic biases of other kinds in model development, past studies have demonstrated the manner in which pediatric representation in data used for models intended for the pediatric population is essential for model performance in that population. We add to these findings, showing that adult-trained chest radiograph models exhibit significant age bias when applied to pediatric populations, with higher false positive rates in younger children. This work underscores the urgent need for increased pediatric representation in publicly accessible medical datasets. We provide actionable recommendations for researchers, policymakers, and data curators to address this age equity gap and ensure AI benefits patients of all ages. 1-2 sentence summaryOur analysis reveals a critical healthcare age disparity: children represent less than 1% of public medical imaging datasets. This gap in representation leads to biased predictions across medical image foundation models, with the youngest patients facing the highest risk of misdiagnosis.

Dual-stage AI system for Pathologist-Free Tumor Detectionand subtyping in Oral Squamous Cell Carcinoma

Chaudhary, N., Muddemanavar, P., Singh, D. K., Rai, A., Mishra, D., SV, S., Augustine, J., Chandra, A., Chaurasia, A., Ahmad, T.

medrxiv logopreprintJun 6 2025
BackgroundAccurate histological grading of oral squamous cell carcinoma (OSCC) is critical for prognosis and treatment planning. Current methods lack automation for OSCC detection, subtyping, and differentiation from high-risk pre-malignant conditions like oral submucous fibrosis (OSMF). Further, analysis of whole-slide image (WSI) analysis is time-consuming and variable, limiting consistency. We present a clinically relevant deep learning framework that leverages weakly supervised learning and attention-based multiple instance learning (MIL) to enable automated OSCC grading and early prediction of malignant transformation from OSMF. MethodsWe conducted a multi-institutional retrospective cohort study using a curated dataset of 1,925 whole-slide images (WSIs), including 1,586 OSCC cases stratified into well-, moderately-, and poorly-differentiated subtypes (WD, MD, and PD), 128 normal controls, and 211 OSMF and OSMF with OSCC cases. We developed a two-stage deep learning pipeline named OralPatho. In stage one, an attention-based multiple instance learning (MIL) model was trained to perform binary classification (normal vs OSCC). In stage two, a gated attention mechanism with top-K patch selection was employed to classify the OSCC subtypes. Model performance was assessed using stratified 3-fold cross-validation and external validation on an independent dataset. FindingsThe binary classifier demonstrated robust performance with a mean F1-score exceeding 0.93 across all validation folds. The multiclass model achieved consistent macro-F1 scores of 0.72, 0.70, and 0.68, along with AUCs of 0.79 for WD, 0.71 for MD, and 0.61 for PD OSCC subtypes. Model generalizability was validated using an independent external dataset. Attention maps reliably highlighted clinically relevant histological features, supporting the systems interpretability and diagnostic alignment with expert pathological assessment. InterpretationThis study demonstrates the feasibility of attention-based, weakly supervised learning for accurate OSCC grading from whole-slide images. OralPatho combines high diagnostic performance with real-time interpretability, making it a scalable solution for both advanced pathology labs and resource-limited settings.

Magnetic resonance imaging and the evaluation of vestibular schwannomas: a systematic review

Lee, K. S., Wijetilake, N., Connor, S., Vercauteren, T., Shapey, J.

medrxiv logopreprintJun 6 2025
IntroductionThe assessment of vestibular schwannoma (VS) requires a standardized measurement approach as growth is a key element in defining treatment strategy for VS. Volumetric measurements offer higher sensitivity and precision, but existing methods of segmentation, are labour-intensive, lack standardisation and are prone to variability and subjectivity. A new core set of measurement indicators reported consistently, will support clinical decision-making and facilitate evidence synthesis. This systematic review aimed to identify indicators used in 1) magnetic resonance imaging (MRI) acquisition and 2) measurement or 3) growth of VS. This work is expected to inform a Delphi consensus. MethodsSystematic searches of Medline, Embase and Cochrane Central were undertaken on 4th October 2024. Studies that assessed the evaluation of VS with MRI, between 2014 and 2024 were included. ResultsThe final dataset consisted of 102 studies and 19001 patients. Eighty-six (84.3%) studies employed post contrast T1 as the MRI acquisition of choice for evaluating VS. Nine (8.8%) studies additionally employed heavily weighted T2 sequences such as constructive interference in steady state (CISS) and FIESTA-C. Only 45 (44.1%) studies reported the slice thickness with the majority 38 (84.4%) choosing <3mm in thickness. Fifty-eight (56.8%) studies measured volume whilst 49 (48.0%) measured the largest linear dimension; 14 (13.7%) studies used both measurements. Four studies employed semi-automated or automated segmentation processes to measure the volumes of VS. Of 68 studies investigating growth, 54 (79.4%) provided a threshold. Significant variation in volumetric growth was observed but the threshold for significant percentage change reported by most studies was 20% (n = 18). ConclusionSubstantial variation in MRI acquisition, and methods for evaluating measurement and growth of VS, exists across the literature. This lack of standardization is likely attributed to resource constraints and the fact that currently available volumetric segmentation methods are very labour-intensive. Following the identification of the indicators employed in the literature, this study aims to develop a Delphi consensus for the standardized measurement of VS and uptake in employing a data-driven artificial intelligence-based measuring tools.

Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts

Mertens, C. J., Haentze, H., Ziegelmayer, S., Kather, J. N., Truhn, D., Kim, S. H., Busch, F., Weller, D., Wiestler, B., Graf, M., Bamberg, F., Schlett, C. L., Weiss, J. B., Ringhof, S., Can, E., Schulz-Menger, J., Niendorf, T., Lammert, J., Molwitz, I., Kader, A., Hering, A., Meddeb, A., Nawabi, J., Schulze, M. B., Keil, T., Willich, S. N., Krist, L., Hadamitzky, M., Hannemann, A., Bassermann, F., Rueckert, D., Pischon, T., Hapfelmeier, A., Makowski, M. R., Bressem, K. K., Adams, L. C.

medrxiv logopreprintJun 6 2025
Body mass index (BMI) does not account for substantial inter-individual differences in regional fat and muscle compartments, which are relevant for the prevalence of cardiometabolic and cancer conditions. We applied a validated deep learning pipeline for automated segmentation of whole-body MRI scans in 45,851 adults from the UK Biobank and German National Cohort, enabling harmonized quantification of visceral (VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions were evaluated using compartment measures adjusted for age, sex, height, and BMI. Our analysis demonstrates that regional adiposity and muscle volume show distinct associations with cardiometabolic and cancer prevalence, and that substantial disease heterogeneity exists within BMI strata. The analytic framework and reference data presented here will support future risk stratification efforts and facilitate the integration of automated MRI phenotyping into large-scale population and clinical research.

Detecting neurodegenerative changes in glaucoma using deep mean kurtosis-curve-corrected tractometry

Kasa, L. W., Schierding, W., Kwon, E., Holdsworth, S., Danesh-Meyer, H. V.

medrxiv logopreprintJun 6 2025
Glaucoma is increasingly recognized as a neurodegenerative condition involving both retinal and central nervous system structures. Here, we present an integrated framework that combines MK-Curve-corrected diffusion kurtosis imaging (DKI), tractometry, and deep autoencoder-based normative modeling to detect localized white matter abnormalities associated with glaucoma. Using UK Biobank diffusion MRI data, we show that MK-Curve approach corrects anatomically implausible values and improves the reliability of DKI metrics - particularly mean (MK), radial (RK), and axial kurtosis (AK) - in regions of complex fiber architecture. Tractometry revealed reduced MK in glaucoma patients along the optic radiation, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus, but not in a non-visual control tract, supporting disease specificity. These abnormalities were spatially localized, with significant changes observed at multiple points along the tracts. MK demonstrated greater sensitivity than MD and exhibited altered distributional features, reflecting microstructural heterogeneity not captured by standard metrics. Node-wise MK values in the right optic radiation showed weak but significant correlations with retinal OCT measures (ganglion cell layer and retinal nerve fiber layer thickness), reinforcing the biological relevance of these findings. Deep autoencoder-based modeling further enabled subject-level anomaly detection that aligned spatially with group-level changes and outperformed traditional approaches. Together, our results highlight the potential of advanced diffusion modeling and deep learning for sensitive, individualized detection of glaucomatous neurodegeneration and support their integration into future multimodal imaging pipelines in neuro-ophthalmology.

Clinically Interpretable Deep Learning via Sparse BagNets for Epiretinal Membrane and Related Pathology Detection

Ofosu Mensah, S., Neubauer, J., Ayhan, M. S., Djoumessi Donteu, K. R., Koch, L. M., Uzel, M. M., Gelisken, F., Berens, P.

medrxiv logopreprintJun 6 2025
Epiretinal membrane (ERM) is a vitreoretinal interface disease that, if not properly addressed, can lead to vision impairment and negatively affect quality of life. For ERM detection and treatment planning, Optical Coherence Tomography (OCT) has become the primary imaging modality, offering non-invasive, high-resolution cross-sectional imaging of the retina. Deep learning models have also led to good ERM detection performance on OCT images. Nevertheless, most deep learning models cannot be easily understood by clinicians, which limits their acceptance in clinical practice. Post-hoc explanation methods have been utilised to support the uptake of models, albeit, with partial success. In this study, we trained a sparse BagNet model, an inherently interpretable deep learning model, to detect ERM in OCT images. It performed on par with a comparable black-box model and generalised well to external data. In a multitask setting, it also accurately predicted other changes related to the ERM pathophysiology. Through a user study with ophthalmologists, we showed that the visual explanations readily provided by the sparse BagNet model for its decisions are well-aligned with clinical expertise. We propose potential directions for clinical implementation of the sparse BagNet model to guide clinical decisions in practice.

Prediction of impulse control disorders in Parkinson's disease: a longitudinal machine learning study

Vamvakas, A., van Balkom, T., van Wingen, G., Booij, J., Weintraub, D., Berendse, H. W., van den Heuvel, O. A., Vriend, C.

medrxiv logopreprintJun 5 2025
BackgroundImpulse control disorders (ICD) in Parkinsons disease (PD) patients mainly occur as adverse effects of dopamine replacement therapy. Despite several known risk factors associated with ICD development, this cannot yet be accurately predicted at PD diagnosis. ObjectivesWe aimed to investigate the predictability of incident ICD by baseline measures of demographic, clinical, dopamine transporter single photon emission computed tomography (DAT-SPECT), and genetic variables. MethodsWe used demographic and clinical data of medication-free PD patients from two longitudinal datasets; Parkinsons Progression Markers Initiative (PPMI) (n=311) and Amsterdam UMC (n=72). We extracted radiomic and latent features from DAT-SPECT. We used single nucleotic polymorphisms (SNPs) from PPMIs NeuroX and Exome sequencing data. Four machine learning classifiers were trained on combinations of the input feature sets, to predict incident ICD at any follow-up assessment. Classification performance was measured with 10x5-fold cross-validation. ResultsICD prevalence at any follow-up was 0.32. The highest performance in predicting incident ICD (AUC=0.66) was achieved by the models trained on clinical features only. Anxiety severity and age of PD onset were identified as the most important features. Performance did not improve with adding features from DAT-SPECT or SNPs. We observed significantly higher performance (AUC=0.74) when classifying patients who developed ICD within four years from diagnosis compared with those tested negative for seven or more years. ConclusionsPrediction accuracy for later ICD development, at the time of PD diagnosis, is limited; however, it increases for shorter time-to-event predictions. Neither DAT-SPECT nor genetic data improve the predictability obtained using demographic and clinical variables alone.
Page 3 of 768 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.