Sort by:
Page 3 of 54531 results

Three-dimensional end-to-end deep learning for brain MRI analysis

Radhika Juglan, Marta Ligero, Zunamys I. Carrero, Asier Rabasco, Tim Lenz, Leo Misera, Gregory Patrick Veldhuizen, Paul Kuntke, Hagen H. Kitzler, Sven Nebelung, Daniel Truhn, Jakob Nikolas Kather

arxiv logopreprintJun 30 2025
Deep learning (DL) methods are increasingly outperforming classical approaches in brain imaging, yet their generalizability across diverse imaging cohorts remains inadequately assessed. As age and sex are key neurobiological markers in clinical neuroscience, influencing brain structure and disease risk, this study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction using T1-weighted MRI from four independent cohorts: UK Biobank (UKB, n=47,390), Dallas Lifespan Brain Study (DLBS, n=132), Parkinson's Progression Markers Initiative (PPMI, n=108 healthy controls), and Information eXtraction from Images (IXI, n=319). We found that SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB (internal test set) and 0.85-0.91 in external test sets for sex classification. For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets. Pairwise DeLong and Wilcoxon signed-rank tests with Bonferroni corrections confirmed SFCN's superiority over Swin Transformer across most cohorts (p<0.017, for three comparisons). Explainability analysis further demonstrates the regional consistency of model attention across cohorts and specific to each task. Our findings reveal that simpler convolutional networks outperform the denser and more complex attention-based DL architectures in brain image analysis by demonstrating better generalizability across different datasets.

MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction

Lingtong Zhang, Mengdie Song, Xiaohan Hao, Huayu Mai, Bensheng Qiu

arxiv logopreprintJun 30 2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.

Artificial Intelligence-assisted Pixel-level Lung (APL) Scoring for Fast and Accurate Quantification in Ultra-short Echo-time MRI

Bowen Xin, Rohan Hickey, Tamara Blake, Jin Jin, Claire E Wainwright, Thomas Benkert, Alto Stemmer, Peter Sly, David Coman, Jason Dowling

arxiv logopreprintJun 30 2025
Lung magnetic resonance imaging (MRI) with ultrashort echo-time (UTE) represents a recent breakthrough in lung structure imaging, providing image resolution and quality comparable to computed tomography (CT). Due to the absence of ionising radiation, MRI is often preferred over CT in paediatric diseases such as cystic fibrosis (CF), one of the most common genetic disorders in Caucasians. To assess structural lung damage in CF imaging, CT scoring systems provide valuable quantitative insights for disease diagnosis and progression. However, few quantitative scoring systems are available in structural lung MRI (e.g., UTE-MRI). To provide fast and accurate quantification in lung MRI, we investigated the feasibility of novel Artificial intelligence-assisted Pixel-level Lung (APL) scoring for CF. APL scoring consists of 5 stages, including 1) image loading, 2) AI lung segmentation, 3) lung-bounded slice sampling, 4) pixel-level annotation, and 5) quantification and reporting. The results shows that our APL scoring took 8.2 minutes per subject, which was more than twice as fast as the previous grid-level scoring. Additionally, our pixel-level scoring was statistically more accurate (p=0.021), while strongly correlating with grid-level scoring (R=0.973, p=5.85e-9). This tool has great potential to streamline the workflow of UTE lung MRI in clinical settings, and be extended to other structural lung MRI sequences (e.g., BLADE MRI), and for other lung diseases (e.g., bronchopulmonary dysplasia).

MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation

Peiting Tian, Xi Chen, Haixia Bi, Fan Li

arxiv logopreprintJun 30 2025
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.

GUSL: A Novel and Efficient Machine Learning Model for Prostate Segmentation on MRI

Jiaxin Yang, Vasileios Magoulianitis, Catherine Aurelia Christie Alexander, Jintang Xue, Masatomo Kaneko, Giovanni Cacciamani, Andre Abreu, Vinay Duddalwar, C. -C. Jay Kuo, Inderbir S. Gill, Chrysostomos Nikias

arxiv logopreprintJun 30 2025
Prostate and zonal segmentation is a crucial step for clinical diagnosis of prostate cancer (PCa). Computer-aided diagnosis tools for prostate segmentation are based on the deep learning (DL) paradigm. However, deep neural networks are perceived as "black-box" solutions by physicians, thus making them less practical for deployment in the clinical setting. In this paper, we introduce a feed-forward machine learning model, named Green U-shaped Learning (GUSL), suitable for medical image segmentation without backpropagation. GUSL introduces a multi-layer regression scheme for coarse-to-fine segmentation. Its feature extraction is based on a linear model, which enables seamless interpretability during feature extraction. Also, GUSL introduces a mechanism for attention on the prostate boundaries, which is an error-prone region, by employing regression to refine the predictions through residue correction. In addition, a two-step pipeline approach is used to mitigate the class imbalance, an issue inherent in medical imaging problems. After conducting experiments on two publicly available datasets and one private dataset, in both prostate gland and zonal segmentation tasks, GUSL achieves state-of-the-art performance among other DL-based models. Notably, GUSL features a very energy-efficient pipeline, since it has a model size several times smaller and less complexity than the rest of the solutions. In all datasets, GUSL achieved a Dice Similarity Coefficient (DSC) performance greater than $0.9$ for gland segmentation. Considering also its lightweight model size and transparency in feature extraction, it offers a competitive and practical package for medical imaging applications.

VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation

Peng Huang, Junhu Fu, Bowen Guo, Zeju Li, Yuanyuan Wang, Yi Guo

arxiv logopreprintJun 30 2025
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.

Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation

Fangyijie Wang, Kevin Whelan, Félix Balado, Guénolé Silvestre, Kathleen M. Curran

arxiv logopreprintJun 30 2025
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.

Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound

Yuhao Huang, Yueyue Xu, Haoran Dou, Jiaxiao Deng, Xin Yang, Hongyu Zheng, Dong Ni

arxiv logopreprintJun 30 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.

FD-DiT: Frequency Domain-Directed Diffusion Transformer for Low-Dose CT Reconstruction

Qiqing Liu, Guoquan Wei, Zekun Zhou, Yiyang Wen, Liu Shi, Qiegen Liu

arxiv logopreprintJun 30 2025
Low-dose computed tomography (LDCT) reduces radiation exposure but suffers from image artifacts and loss of detail due to quantum and electronic noise, potentially impacting diagnostic accuracy. Transformer combined with diffusion models has been a promising approach for image generation. Nevertheless, existing methods exhibit limitations in preserving finegrained image details. To address this issue, frequency domain-directed diffusion transformer (FD-DiT) is proposed for LDCT reconstruction. FD-DiT centers on a diffusion strategy that progressively introduces noise until the distribution statistically aligns with that of LDCT data, followed by denoising processing. Furthermore, we employ a frequency decoupling technique to concentrate noise primarily in high-frequency domain, thereby facilitating effective capture of essential anatomical structures and fine details. A hybrid denoising network is then utilized to optimize the overall data reconstruction process. To enhance the capability in recognizing high-frequency noise, we incorporate sliding sparse local attention to leverage the sparsity and locality of shallow-layer information, propagating them via skip connections for improving feature representation. Finally, we propose a learnable dynamic fusion strategy for optimal component integration. Experimental results demonstrate that at identical dose levels, LDCT images reconstructed by FD-DiT exhibit superior noise and artifact suppression compared to state-of-the-art methods.

Contrastive Learning with Diffusion Features for Weakly Supervised Medical Image Segmentation

Dewen Zeng, Xinrong Hu, Yu-Jen Chen, Yawen Wu, Xiaowei Xu, Yiyu Shi

arxiv logopreprintJun 30 2025
Weakly supervised semantic segmentation (WSSS) methods using class labels often rely on class activation maps (CAMs) to localize objects. However, traditional CAM-based methods struggle with partial activations and imprecise object boundaries due to optimization discrepancies between classification and segmentation. Recently, the conditional diffusion model (CDM) has been used as an alternative for generating segmentation masks in WSSS, leveraging its strong image generation capabilities tailored to specific class distributions. By modifying or perturbing the condition during diffusion sampling, the related objects can be highlighted in the generated images. Yet, the saliency maps generated by CDMs are prone to noise from background alterations during reverse diffusion. To alleviate the problem, we introduce Contrastive Learning with Diffusion Features (CLDF), a novel method that uses contrastive learning to train a pixel decoder to map the diffusion features from a frozen CDM to a low-dimensional embedding space for segmentation. Specifically, we integrate gradient maps generated from CDM external classifier with CAMs to identify foreground and background pixels with fewer false positives/negatives for contrastive learning, enabling robust pixel embedding learning. Experimental results on four segmentation tasks from two public medical datasets demonstrate that our method significantly outperforms existing baselines.
Page 3 of 54531 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.