Sort by:
Page 26 of 1061052 results

Multi-Attention Stacked Ensemble for Lung Cancer Detection in CT Scans

Uzzal Saha, Surya Prakash

arxiv logopreprintJul 27 2025
In this work, we address the challenge of binary lung nodule classification (benign vs malignant) using CT images by proposing a multi-level attention stacked ensemble of deep neural networks. Three pretrained backbones - EfficientNet V2 S, MobileViT XXS, and DenseNet201 - are each adapted with a custom classification head tailored to 96 x 96 pixel inputs. A two-stage attention mechanism learns both model-wise and class-wise importance scores from concatenated logits, and a lightweight meta-learner refines the final prediction. To mitigate class imbalance and improve generalization, we employ dynamic focal loss with empirically calculated class weights, MixUp augmentation during training, and test-time augmentation at inference. Experiments on the LIDC-IDRI dataset demonstrate exceptional performance, achieving 98.09 accuracy and 0.9961 AUC, representing a 35 percent reduction in error rate compared to state-of-the-art methods. The model exhibits balanced performance across sensitivity (98.73) and specificity (98.96), with particularly strong results on challenging cases where radiologist disagreement was high. Statistical significance testing confirms the robustness of these improvements across multiple experimental runs. Our approach can serve as a robust, automated aid for radiologists in lung cancer screening.

Brainwide hemodynamics predict EEG neural rhythms across sleep and wakefulness in humans

Jacob, L. P. L., Bailes, S. M., Williams, S. D., Stringer, C., Lewis, L. D.

biorxiv logopreprintJul 26 2025
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the widespread brain dynamics underlying these oscillations are difficult to investigate. Using simultaneous EEG and fast fMRI in humans who fell asleep inside the scanner, we developed a machine learning approach to investigate which fMRI regions and networks predict fluctuations in neural rhythms. We demonstrated that the rise and fall of alpha (8-12 Hz) and delta (1-4 Hz) power, two canonical EEG bands critically involved with cognition and vigilance, can be predicted from fMRI data in subjects that were not present in the training set. This approach also identified predictive information in individual brain regions across the cortex and subcortex. Finally, we developed an approach to identify shared and unique predictive information, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale primarily across the cortex. These results demonstrate that EEG rhythms can be predicted from fMRI data, identify large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal brain dynamics.

FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation

Ze Rong, ZiYue Zhao, Zhaoxin Wang, Lei Ma

arxiv logopreprintJul 26 2025
Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.

Leveraging Fine-Tuned Large Language Models for Interpretable Pancreatic Cystic Lesion Feature Extraction and Risk Categorization

Ebrahim Rasromani, Stella K. Kang, Yanqi Xu, Beisong Liu, Garvit Luhadia, Wan Fung Chui, Felicia L. Pasadyn, Yu Chih Hung, Julie Y. An, Edwin Mathieu, Zehui Gu, Carlos Fernandez-Granda, Ammar A. Javed, Greg D. Sacks, Tamas Gonda, Chenchan Huang, Yiqiu Shen

arxiv logopreprintJul 26 2025
Background: Manual extraction of pancreatic cystic lesion (PCL) features from radiology reports is labor-intensive, limiting large-scale studies needed to advance PCL research. Purpose: To develop and evaluate large language models (LLMs) that automatically extract PCL features from MRI/CT reports and assign risk categories based on guidelines. Materials and Methods: We curated a training dataset of 6,000 abdominal MRI/CT reports (2005-2024) from 5,134 patients that described PCLs. Labels were generated by GPT-4o using chain-of-thought (CoT) prompting to extract PCL and main pancreatic duct features. Two open-source LLMs were fine-tuned using QLoRA on GPT-4o-generated CoT data. Features were mapped to risk categories per institutional guideline based on the 2017 ACR White Paper. Evaluation was performed on 285 held-out human-annotated reports. Model outputs for 100 cases were independently reviewed by three radiologists. Feature extraction was evaluated using exact match accuracy, risk categorization with macro-averaged F1 score, and radiologist-model agreement with Fleiss' Kappa. Results: CoT fine-tuning improved feature extraction accuracy for LLaMA (80% to 97%) and DeepSeek (79% to 98%), matching GPT-4o (97%). Risk categorization F1 scores also improved (LLaMA: 0.95; DeepSeek: 0.94), closely matching GPT-4o (0.97), with no statistically significant differences. Radiologist inter-reader agreement was high (Fleiss' Kappa = 0.888) and showed no statistically significant difference with the addition of DeepSeek-FT-CoT (Fleiss' Kappa = 0.893) or GPT-CoT (Fleiss' Kappa = 0.897), indicating that both models achieved agreement levels on par with radiologists. Conclusion: Fine-tuned open-source LLMs with CoT supervision enable accurate, interpretable, and efficient phenotyping for large-scale PCL research, achieving performance comparable to GPT-4o.

MambaVesselNet++: A Hybrid CNN-Mamba Architecture for Medical Image Segmentation

Qing Xu, Yanming Chen, Yue Li, Ziyu Liu, Zhenye Lou, Yixuan Zhang, Xiangjian He

arxiv logopreprintJul 26 2025
Medical image segmentation plays an important role in computer-aided diagnosis. Traditional convolution-based U-shape segmentation architectures are usually limited by the local receptive field. Existing vision transformers have been widely applied to diverse medical segmentation frameworks due to their superior capabilities of capturing global contexts. Despite the advantage, the real-world application of vision transformers is challenged by their non-linear self-attention mechanism, requiring huge computational costs. To address this issue, the selective state space model (SSM) Mamba has gained recognition for its adeptness in modeling long-range dependencies in sequential data, particularly noted for its efficient memory costs. In this paper, we propose MambaVesselNet++, a Hybrid CNN-Mamba framework for medical image segmentation. Our MambaVesselNet++ is comprised of a hybrid image encoder (Hi-Encoder) and a bifocal fusion decoder (BF-Decoder). In Hi-Encoder, we first devise the texture-aware layer to capture low-level semantic features by leveraging convolutions. Then, we utilize Mamba to effectively model long-range dependencies with linear complexity. The Bi-Decoder adopts skip connections to combine local and global information of the Hi-Encoder for the accurate generation of segmentation masks. Extensive experiments demonstrate that MambaVesselNet++ outperforms current convolution-based, transformer-based, and Mamba-based state-of-the-arts across diverse medical 2D, 3D, and instance segmentation tasks. The code is available at https://github.com/CC0117/MambaVesselNet.

Hybrid Deep Learning and Handcrafted Feature Fusion for Mammographic Breast Cancer Classification

Maximilian Tschuchnig, Michael Gadermayr, Khalifa Djemal

arxiv logopreprintJul 26 2025
Automated breast cancer classification from mammography remains a significant challenge due to subtle distinctions between benign and malignant tissue. In this work, we present a hybrid framework combining deep convolutional features from a ResNet-50 backbone with handcrafted descriptors and transformer-based embeddings. Using the CBIS-DDSM dataset, we benchmark our ResNet-50 baseline (AUC: 78.1%) and demonstrate that fusing handcrafted features with deep ResNet-50 and DINOv2 features improves AUC to 79.6% (setup d1), with a peak recall of 80.5% (setup d1) and highest F1 score of 67.4% (setup d1). Our experiments show that handcrafted features not only complement deep representations but also enhance performance beyond transformer-based embeddings. This hybrid fusion approach achieves results comparable to state-of-the-art methods while maintaining architectural simplicity and computational efficiency, making it a practical and effective solution for clinical decision support.

A Metabolic-Imaging Integrated Model for Prognostic Prediction in Colorectal Liver Metastases

Qinlong Li, Pu Sun, Guanlin Zhu, Tianjiao Liang, Honggang QI

arxiv logopreprintJul 26 2025
Prognostic evaluation in patients with colorectal liver metastases (CRLM) remains challenging due to suboptimal accuracy of conventional clinical models. This study developed and validated a robust machine learning model for predicting postoperative recurrence risk. Preliminary ensemble models achieved exceptionally high performance (AUC $>$ 0.98) but incorporated postoperative features, introducing data leakage risks. To enhance clinical applicability, we restricted input variables to preoperative baseline clinical parameters and radiomic features from contrast-enhanced CT imaging, specifically targeting recurrence prediction at 3, 6, and 12 months postoperatively. The 3-month recurrence prediction model demonstrated optimal performance with an AUC of 0.723 in cross-validation. Decision curve analysis revealed that across threshold probabilities of 0.55-0.95, the model consistently provided greater net benefit than "treat-all" or "treat-none" strategies, supporting its utility in postoperative surveillance and therapeutic decision-making. This study successfully developed a robust predictive model for early CRLM recurrence with confirmed clinical utility. Importantly, it highlights the critical risk of data leakage in clinical prognostic modeling and proposes a rigorous framework to mitigate this issue, enhancing model reliability and translational value in real-world settings.

All-in-One Medical Image Restoration with Latent Diffusion-Enhanced Vector-Quantized Codebook Prior

Haowei Chen, Zhiwen Yang, Haotian Hou, Hui Zhang, Bingzheng Wei, Gang Zhou, Yan Xu

arxiv logopreprintJul 26 2025
All-in-one medical image restoration (MedIR) aims to address multiple MedIR tasks using a unified model, concurrently recovering various high-quality (HQ) medical images (e.g., MRI, CT, and PET) from low-quality (LQ) counterparts. However, all-in-one MedIR presents significant challenges due to the heterogeneity across different tasks. Each task involves distinct degradations, leading to diverse information losses in LQ images. Existing methods struggle to handle these diverse information losses associated with different tasks. To address these challenges, we propose a latent diffusion-enhanced vector-quantized codebook prior and develop \textbf{DiffCode}, a novel framework leveraging this prior for all-in-one MedIR. Specifically, to compensate for diverse information losses associated with different tasks, DiffCode constructs a task-adaptive codebook bank to integrate task-specific HQ prior features across tasks, capturing a comprehensive prior. Furthermore, to enhance prior retrieval from the codebook bank, DiffCode introduces a latent diffusion strategy that utilizes the diffusion model's powerful mapping capabilities to iteratively refine the latent feature distribution, estimating more accurate HQ prior features during restoration. With the help of the task-adaptive codebook bank and latent diffusion strategy, DiffCode achieves superior performance in both quantitative metrics and visual quality across three MedIR tasks: MRI super-resolution, CT denoising, and PET synthesis.

Counterfactual Explanations in Medical Imaging: Exploring SPN-Guided Latent Space Manipulation

Julia Siekiera, Stefan Kramer

arxiv logopreprintJul 25 2025
Artificial intelligence is increasingly leveraged across various domains to automate decision-making processes that significantly impact human lives. In medical image analysis, deep learning models have demonstrated remarkable performance. However, their inherent complexity makes them black box systems, raising concerns about reliability and interpretability. Counterfactual explanations provide comprehensible insights into decision processes by presenting hypothetical "what-if" scenarios that alter model classifications. By examining input alterations, counterfactual explanations provide patterns that influence the decision-making process. Despite their potential, generating plausible counterfactuals that adhere to similarity constraints providing human-interpretable explanations remains a challenge. In this paper, we investigate this challenge by a model-specific optimization approach. While deep generative models such as variational autoencoders (VAEs) exhibit significant generative power, probabilistic models like sum-product networks (SPNs) efficiently represent complex joint probability distributions. By modeling the likelihood of a semi-supervised VAE's latent space with an SPN, we leverage its dual role as both a latent space descriptor and a classifier for a given discrimination task. This formulation enables the optimization of latent space counterfactuals that are both close to the original data distribution and aligned with the target class distribution. We conduct experimental evaluation on the cheXpert dataset. To evaluate the effectiveness of the integration of SPNs, our SPN-guided latent space manipulation is compared against a neural network baseline. Additionally, the trade-off between latent variable regularization and counterfactual quality is analyzed.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.
Page 26 of 1061052 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.