Sort by:
Page 23 of 1061052 results

Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic

Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz

arxiv logopreprintJul 31 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

Interpreting convolutional neural network explainability for head-and-neck cancer radiotherapy organ-at-risk segmentation

Strijbis, V. I. J., Gurney-Champion, O. J., Grama, D. I., Slotman, B. J., Verbakel, W. F. A. R.

medrxiv logopreprintJul 31 2025
BackgroundConvolutional neural networks (CNNs) have emerged to reduce clinical resources and standardize auto-contouring of organs-at-risk (OARs). Although CNNs perform adequately for most patients, understanding when the CNN might fail is critical for effective and safe clinical deployment. However, the limitations of CNNs are poorly understood because of their black-box nature. Explainable artificial intelligence (XAI) can expose CNNs inner mechanisms for classification. Here, we investigate the inner mechanisms of CNNs for segmentation and explore a novel, computational approach to a-priori flag potentially insufficient parotid gland (PG) contours. MethodsFirst, 3D UNets were trained in three PG segmentation situations using (1) synthetic cases; (2) 1925 clinical computed tomography (CT) scans with typical and (3) more consistent contours curated through a previously validated auto-curation step. Then, we generated attribution maps for seven XAI methods, and qualitatively assessed them for congruency between simulated and clinical contours, and how much XAI agreed with expert reasoning. To objectify observations, we explored persistent homology intensity filtrations to capture essential topological characteristics of XAI attributions. Principal component (PC) eigenvalues of Euler characteristic profiles were correlated with spatial agreement (Dice-Sorensen similarity coefficient; DSC). Evaluation was done using sensitivity, specificity and the area under receiver operating characteristic (AUROC) curve on an external AAPM dataset, where as proof-of-principle, we regard the lowest 15% DSC as insufficient. ResultsPatternNet attributions (PNet-A) focused on soft-tissue structures, whereas guided backpropagation (GBP) highlighted both soft-tissue and high-density structures (e.g. mandible bone), which was congruent with synthetic situations. Both methods typically had higher/denser activations in better auto-contoured medial and anterior lobes. Curated models produced "cleaner" gradient class-activation mapping (GCAM) attributions. Quantitative analysis showed that PC{lambda}1 of guided GCAMs (GGCAM) Euler characteristic (EC) profile had good predictive value (sensitivity>0.85, specificity>0.9) of DSC for AAPM cases, with AUROC=0.66, 0.74, 0.94, 0.83 for GBP, GCAM, GGCAM and PNet-A. For for {lambda}1<-1.8e3 of GGCAMs EC-profile, 87% of cases were insufficient. ConclusionsGBP and PNet-A qualitatively agreed most with expert reasoning on directly (structure borders) and indirectly (proxies used for identifying structure borders) important features for PG segmentation. Additionally, this work investigated as proof-of-principle how topological data analysis could possibly be used for quantitative XAI signal analysis to a-priori mark potentially inadequate CNN-segmentations, using only features from inside the predicted PG. This work used PG as a well-understood segmentation paradigm and may extend to target volumes and other organs-at-risk.

A Modified VGG19-Based Framework for Accurate and Interpretable Real-Time Bone Fracture Detection

Md. Ehsanul Haque, Abrar Fahim, Shamik Dey, Syoda Anamika Jahan, S. M. Jahidul Islam, Sakib Rokoni, Md Sakib Morshed

arxiv logopreprintJul 31 2025
Early and accurate detection of the bone fracture is paramount to initiating treatment as early as possible and avoiding any delay in patient treatment and outcomes. Interpretation of X-ray image is a time consuming and error prone task, especially when resources for such interpretation are limited by lack of radiology expertise. Additionally, deep learning approaches used currently, typically suffer from misclassifications and lack interpretable explanations to clinical use. In order to overcome these challenges, we propose an automated framework of bone fracture detection using a VGG-19 model modified to our needs. It incorporates sophisticated preprocessing techniques that include Contrast Limited Adaptive Histogram Equalization (CLAHE), Otsu's thresholding, and Canny edge detection, among others, to enhance image clarity as well as to facilitate the feature extraction. Therefore, we use Grad-CAM, an Explainable AI method that can generate visual heatmaps of the model's decision making process, as a type of model interpretability, for clinicians to understand the model's decision making process. It encourages trust and helps in further clinical validation. It is deployed in a real time web application, where healthcare professionals can upload X-ray images and get the diagnostic feedback within 0.5 seconds. The performance of our modified VGG-19 model attains 99.78\% classification accuracy and AUC score of 1.00, making it exceptionally good. The framework provides a reliable, fast, and interpretable solution for bone fracture detection that reasons more efficiently for diagnoses and better patient care.

CX-Mind: A Pioneering Multimodal Large Language Model for Interleaved Reasoning in Chest X-ray via Curriculum-Guided Reinforcement Learning

Wenjie Li, Yujie Zhang, Haoran Sun, Yueqi Li, Fanrui Zhang, Mengzhe Xu, Victoria Borja Clausich, Sade Mellin, Renhao Yang, Chenrun Wang, Jethro Zih-Shuo Wang, Shiyi Yao, Gen Li, Yidong Xu, Hanyu Wang, Yilin Huang, Angela Lin Wang, Chen Shi, Yin Zhang, Jianan Guo, Luqi Yang, Renxuan Li, Yang Xu, Jiawei Liu, Yao Zhang, Lei Liu, Carlos Gutiérrez SanRomán, Lei Wang

arxiv logopreprintJul 31 2025
Chest X-ray (CXR) imaging is one of the most widely used diagnostic modalities in clinical practice, encompassing a broad spectrum of diagnostic tasks. Recent advancements have seen the extensive application of reasoning-based multimodal large language models (MLLMs) in medical imaging to enhance diagnostic efficiency and interpretability. However, existing multimodal models predominantly rely on "one-time" diagnostic approaches, lacking verifiable supervision of the reasoning process. This leads to challenges in multi-task CXR diagnosis, including lengthy reasoning, sparse rewards, and frequent hallucinations. To address these issues, we propose CX-Mind, the first generative model to achieve interleaved "think-answer" reasoning for CXR tasks, driven by curriculum-based reinforcement learning and verifiable process rewards (CuRL-VPR). Specifically, we constructed an instruction-tuning dataset, CX-Set, comprising 708,473 images and 2,619,148 samples, and generated 42,828 high-quality interleaved reasoning data points supervised by clinical reports. Optimization was conducted in two stages under the Group Relative Policy Optimization framework: initially stabilizing basic reasoning with closed-domain tasks, followed by transfer to open-domain diagnostics, incorporating rule-based conditional process rewards to bypass the need for pretrained reward models. Extensive experimental results demonstrate that CX-Mind significantly outperforms existing medical and general-domain MLLMs in visual understanding, text generation, and spatiotemporal alignment, achieving an average performance improvement of 25.1% over comparable CXR-specific models. On real-world clinical dataset (Rui-CXR), CX-Mind achieves a mean recall@1 across 14 diseases that substantially surpasses the second-best results, with multi-center expert evaluations further confirming its clinical utility across multiple dimensions.

MitoStructSeg: mitochondrial structural complexity resolution via adaptive learning for cross-sample morphometric profiling

Wang, X., Wan, X., Cai, B., Jia, Z., Chen, Y., Guo, S., Liu, Z., Zhang, F., Hu, B.

biorxiv logopreprintJul 30 2025
Mitochondrial morphology and structural changes are closely associated with metabolic dysfunction and disease progression. However, the structural complexity of mitochondria presents a major challenge for accurate segmentation and analysis. Most existing methods focus on delineating entire mitochondria but lack the capability to resolve fine internal features, particularly cristae. In this study, we introduce MitoStructSeg, a deep learning-based framework for mitochondrial structure segmentation and quantitative analysis. The core of MitoStructSeg is AMM-Seg, a novel model that integrates domain adaptation to improve cross-sample generalization, dual-channel feature fusion to enhance structural detail extraction, and continuity learning to preserve spatial coherence. This architecture enables accurate segmentation of both mitochondrial membranes and intricately folded cristae. MitoStructSeg further incorporates a quantitative analysis module that extracts key morphological metrics, including surface area, volume, and cristae density, allowing comprehensive and scalable assessment of mitochondrial morphology. The effectiveness of our approach has been validated on both human myocardial tissue and mouse kidney tissue, demonstrating its robustness in accurately segmenting mitochondria with diverse morphologies. In addition, we provide an open source, user-friendly tool to ensure practical usability.

Modality-Aware Feature Matching: A Comprehensive Review of Single- and Cross-Modality Techniques

Weide Liu, Wei Zhou, Jun Liu, Ping Hu, Jun Cheng, Jungong Han, Weisi Lin

arxiv logopreprintJul 30 2025
Feature matching is a cornerstone task in computer vision, essential for applications such as image retrieval, stereo matching, 3D reconstruction, and SLAM. This survey comprehensively reviews modality-based feature matching, exploring traditional handcrafted methods and emphasizing contemporary deep learning approaches across various modalities, including RGB images, depth images, 3D point clouds, LiDAR scans, medical images, and vision-language interactions. Traditional methods, leveraging detectors like Harris corners and descriptors such as SIFT and ORB, demonstrate robustness under moderate intra-modality variations but struggle with significant modality gaps. Contemporary deep learning-based methods, exemplified by detector-free strategies like CNN-based SuperPoint and transformer-based LoFTR, substantially improve robustness and adaptability across modalities. We highlight modality-aware advancements, such as geometric and depth-specific descriptors for depth images, sparse and dense learning methods for 3D point clouds, attention-enhanced neural networks for LiDAR scans, and specialized solutions like the MIND descriptor for complex medical image matching. Cross-modal applications, particularly in medical image registration and vision-language tasks, underscore the evolution of feature matching to handle increasingly diverse data interactions.

Wall Shear Stress Estimation in Abdominal Aortic Aneurysms: Towards Generalisable Neural Surrogate Models

Patryk Rygiel, Julian Suk, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJul 30 2025
Abdominal aortic aneurysms (AAAs) are pathologic dilatations of the abdominal aorta posing a high fatality risk upon rupture. Studying AAA progression and rupture risk often involves in-silico blood flow modelling with computational fluid dynamics (CFD) and extraction of hemodynamic factors like time-averaged wall shear stress (TAWSS) or oscillatory shear index (OSI). However, CFD simulations are known to be computationally demanding. Hence, in recent years, geometric deep learning methods, operating directly on 3D shapes, have been proposed as compelling surrogates, estimating hemodynamic parameters in just a few seconds. In this work, we propose a geometric deep learning approach to estimating hemodynamics in AAA patients, and study its generalisability to common factors of real-world variation. We propose an E(3)-equivariant deep learning model utilising novel robust geometrical descriptors and projective geometric algebra. Our model is trained to estimate transient WSS using a dataset of CT scans of 100 AAA patients, from which lumen geometries are extracted and reference CFD simulations with varying boundary conditions are obtained. Results show that the model generalizes well within the distribution, as well as to the external test set. Moreover, the model can accurately estimate hemodynamics across geometry remodelling and changes in boundary conditions. Furthermore, we find that a trained model can be applied to different artery tree topologies, where new and unseen branches are added during inference. Finally, we find that the model is to a large extent agnostic to mesh resolution. These results show the accuracy and generalisation of the proposed model, and highlight its potential to contribute to hemodynamic parameter estimation in clinical practice.

Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings

Dongli He, Hu Wang, Mohammad Yaqub

arxiv logopreprintJul 30 2025
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study

Ashkan Moradi, Fadila Zerka, Joeran S. Bosma, Mohammed R. S. Sunoqrot, Bendik S. Abrahamsen, Derya Yakar, Jeroen Geerdink, Henkjan Huisman, Tone Frost Bathen, Mattijs Elschot

arxiv logopreprintJul 30 2025
Purpose: To develop and optimize a federated learning (FL) framework across multiple clients for biparametric MRI prostate segmentation and clinically significant prostate cancer (csPCa) detection. Materials and Methods: A retrospective study was conducted using Flower FL to train a nnU-Net-based architecture for MRI prostate segmentation and csPCa detection, using data collected from January 2010 to August 2021. Model development included training and optimizing local epochs, federated rounds, and aggregation strategies for FL-based prostate segmentation on T2-weighted MRIs (four clients, 1294 patients) and csPCa detection using biparametric MRIs (three clients, 1440 patients). Performance was evaluated on independent test sets using the Dice score for segmentation and the Prostate Imaging: Cancer Artificial Intelligence (PI-CAI) score, defined as the average of the area under the receiver operating characteristic curve and average precision, for csPCa detection. P-values for performance differences were calculated using permutation testing. Results: The FL configurations were independently optimized for both tasks, showing improved performance at 1 epoch 300 rounds using FedMedian for prostate segmentation and 5 epochs 200 rounds using FedAdagrad, for csPCa detection. Compared with the average performance of the clients, the optimized FL model significantly improved performance in prostate segmentation and csPCa detection on the independent test set. The optimized FL model showed higher lesion detection performance compared to the FL-baseline model, but no evidence of a difference was observed for prostate segmentation. Conclusions: FL enhanced the performance and generalizability of MRI prostate segmentation and csPCa detection compared with local models, and optimizing its configuration further improved lesion detection performance.

Bridging the Gap in Missing Modalities: Leveraging Knowledge Distillation and Style Matching for Brain Tumor Segmentation

Shenghao Zhu, Yifei Chen, Weihong Chen, Yuanhan Wang, Chang Liu, Shuo Jiang, Feiwei Qin, Changmiao Wang

arxiv logopreprintJul 30 2025
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.
Page 23 of 1061052 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.