Sort by:
Page 22 of 1061052 results

Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic

Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz

arxiv logopreprintJul 31 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction

Kyle Naddeo, Nikolas Koutsoubis, Rahul Krish, Ghulam Rasool, Nidhal Bouaynaya, Tony OSullivan, Raj Krish

arxiv logopreprintJul 31 2025
Access to medical imaging and associated text data has the potential to drive major advances in healthcare research and patient outcomes. However, the presence of Protected Health Information (PHI) and Personally Identifiable Information (PII) in Digital Imaging and Communications in Medicine (DICOM) files presents a significant barrier to the ethical and secure sharing of imaging datasets. This paper presents a hybrid de-identification framework developed by Impact Business Information Solutions (IBIS) that combines rule-based and AI-driven techniques, and rigorous uncertainty quantification for comprehensive PHI/PII removal from both metadata and pixel data. Our approach begins with a two-tiered rule-based system targeting explicit and inferred metadata elements, further augmented by a large language model (LLM) fine-tuned for Named Entity Recognition (NER), and trained on a suite of synthetic datasets simulating realistic clinical PHI/PII. For pixel data, we employ an uncertainty-aware Faster R-CNN model to localize embedded text, extract candidate PHI via Optical Character Recognition (OCR), and apply the NER pipeline for final redaction. Crucially, uncertainty quantification provides confidence measures for AI-based detections to enhance automation reliability and enable informed human-in-the-loop verification to manage residual risks. This uncertainty-aware deidentification framework achieves robust performance across benchmark datasets and regulatory standards, including DICOM, HIPAA, and TCIA compliance metrics. By combining scalable automation, uncertainty quantification, and rigorous quality assurance, our solution addresses critical challenges in medical data de-identification and supports the secure, ethical, and trustworthy release of imaging data for research.

Consistent Point Matching

Halid Ziya Yerebakan, Gerardo Hermosillo Valadez

arxiv logopreprintJul 31 2025
This study demonstrates that incorporating a consistency heuristic into the point-matching algorithm \cite{yerebakan2023hierarchical} improves robustness in matching anatomical locations across pairs of medical images. We validated our approach on diverse longitudinal internal and public datasets spanning CT and MRI modalities. Notably, it surpasses state-of-the-art results on the Deep Lesion Tracking dataset. Additionally, we show that the method effectively addresses landmark localization. The algorithm operates efficiently on standard CPU hardware and allows configurable trade-offs between speed and robustness. The method enables high-precision navigation between medical images without requiring a machine learning model or training data.

Machine learning and machine learned prediction in chest X-ray images

Shereiff Garrett, Abhinav Adhikari, Sarina Gautam, DaShawn Marquis Morris, Chandra Mani Adhikari

arxiv logopreprintJul 31 2025
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.

Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2

Solha Kang, Eugene Kim, Joris Vankerschaver, Utku Ozbulak

arxiv logopreprintJul 31 2025
Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.

SAMSA: Segment Anything Model Enhanced with Spectral Angles for Hyperspectral Interactive Medical Image Segmentation

Alfie Roddan, Tobias Czempiel, Chi Xu, Daniel S. Elson, Stamatia Giannarou

arxiv logopreprintJul 31 2025
Hyperspectral imaging (HSI) provides rich spectral information for medical imaging, yet encounters significant challenges due to data limitations and hardware variations. We introduce SAMSA, a novel interactive segmentation framework that combines an RGB foundation model with spectral analysis. SAMSA efficiently utilizes user clicks to guide both RGB segmentation and spectral similarity computations. The method addresses key limitations in HSI segmentation through a unique spectral feature fusion strategy that operates independently of spectral band count and resolution. Performance evaluation on publicly available datasets has shown 81.0% 1-click and 93.4% 5-click DICE on a neurosurgical and 81.1% 1-click and 89.2% 5-click DICE on an intraoperative porcine hyperspectral dataset. Experimental results demonstrate SAMSA's effectiveness in few-shot and zero-shot learning scenarios and using minimal training examples. Our approach enables seamless integration of datasets with different spectral characteristics, providing a flexible framework for hyperspectral medical image analysis.

Adaptively Distilled ControlNet: Accelerated Training and Superior Sampling for Medical Image Synthesis

Kunpeng Qiu, Zhiying Zhou, Yongxin Guo

arxiv logopreprintJul 31 2025
Medical image annotation is constrained by privacy concerns and labor-intensive labeling, significantly limiting the performance and generalization of segmentation models. While mask-controllable diffusion models excel in synthesis, they struggle with precise lesion-mask alignment. We propose \textbf{Adaptively Distilled ControlNet}, a task-agnostic framework that accelerates training and optimization through dual-model distillation. Specifically, during training, a teacher model, conditioned on mask-image pairs, regularizes a mask-only student model via predicted noise alignment in parameter space, further enhanced by adaptive regularization based on lesion-background ratios. During sampling, only the student model is used, enabling privacy-preserving medical image generation. Comprehensive evaluations on two distinct medical datasets demonstrate state-of-the-art performance: TransUNet improves mDice/mIoU by 2.4%/4.2% on KiTS19, while SANet achieves 2.6%/3.5% gains on Polyps, highlighting its effectiveness and superiority. Code is available at GitHub.

Medical Image De-Identification Benchmark Challenge

Linmin Pei, Granger Sutton, Michael Rutherford, Ulrike Wagner, Tracy Nolan, Kirk Smith, Phillip Farmer, Peter Gu, Ambar Rana, Kailing Chen, Thomas Ferleman, Brian Park, Ye Wu, Jordan Kojouharov, Gargi Singh, Jon Lemon, Tyler Willis, Milos Vukadinovic, Grant Duffy, Bryan He, David Ouyang, Marco Pereanez, Daniel Samber, Derek A. Smith, Christopher Cannistraci, Zahi Fayad, David S. Mendelson, Michele Bufano, Elmar Kotter, Hamideh Haghiri, Rajesh Baidya, Stefan Dvoretskii, Klaus H. Maier-Hein, Marco Nolden, Christopher Ablett, Silvia Siggillino, Sandeep Kaushik, Hongzhu Jiang, Sihan Xie, Zhiyu Wan, Alex Michie, Simon J Doran, Angeline Aurelia Waly, Felix A. Nathaniel Liang, Humam Arshad Mustagfirin, Michelle Grace Felicia, Kuo Po Chih, Rahul Krish, Ghulam Rasool, Nidhal Bouaynaya, Nikolas Koutsoubis, Kyle Naddeo, Kartik Pandit, Tony O'Sullivan, Raj Krish, Qinyan Pan, Scott Gustafson, Benjamin Kopchick, Laura Opsahl-Ong, Andrea Olvera-Morales, Jonathan Pinney, Kathryn Johnson, Theresa Do, Juergen Klenk, Maria Diaz, Arti Singh, Rong Chai, David A. Clunie, Fred Prior, Keyvan Farahani

arxiv logopreprintJul 31 2025
The de-identification (deID) of protected health information (PHI) and personally identifiable information (PII) is a fundamental requirement for sharing medical images, particularly through public repositories, to ensure compliance with patient privacy laws. In addition, preservation of non-PHI metadata to inform and enable downstream development of imaging artificial intelligence (AI) is an important consideration in biomedical research. The goal of MIDI-B was to provide a standardized platform for benchmarking of DICOM image deID tools based on a set of rules conformant to the HIPAA Safe Harbor regulation, the DICOM Attribute Confidentiality Profiles, and best practices in preservation of research-critical metadata, as defined by The Cancer Imaging Archive (TCIA). The challenge employed a large, diverse, multi-center, and multi-modality set of real de-identified radiology images with synthetic PHI/PII inserted. The MIDI-B Challenge consisted of three phases: training, validation, and test. Eighty individuals registered for the challenge. In the training phase, we encouraged participants to tune their algorithms using their in-house or public data. The validation and test phases utilized the DICOM images containing synthetic identifiers (of 216 and 322 subjects, respectively). Ten teams successfully completed the test phase of the challenge. To measure success of a rule-based approach to image deID, scores were computed as the percentage of correct actions from the total number of required actions. The scores ranged from 97.91% to 99.93%. Participants employed a variety of open-source and proprietary tools with customized configurations, large language models, and optical character recognition (OCR). In this paper we provide a comprehensive report on the MIDI-B Challenge's design, implementation, results, and lessons learned.

Out-of-Distribution Detection in Medical Imaging via Diffusion Trajectories

Lemar Abdi, Francisco Caetano, Amaan Valiuddin, Christiaan Viviers, Hamdi Joudeh, Fons van der Sommen

arxiv logopreprintJul 31 2025
In medical imaging, unsupervised out-of-distribution (OOD) detection offers an attractive approach for identifying pathological cases with extremely low incidence rates. In contrast to supervised methods, OOD-based approaches function without labels and are inherently robust to data imbalances. Current generative approaches often rely on likelihood estimation or reconstruction error, but these methods can be computationally expensive, unreliable, and require retraining if the inlier data changes. These limitations hinder their ability to distinguish nominal from anomalous inputs efficiently, consistently, and robustly. We propose a reconstruction-free OOD detection method that leverages the forward diffusion trajectories of a Stein score-based denoising diffusion model (SBDDM). By capturing trajectory curvature via the estimated Stein score, our approach enables accurate anomaly scoring with only five diffusion steps. A single SBDDM pre-trained on a large, semantically aligned medical dataset generalizes effectively across multiple Near-OOD and Far-OOD benchmarks, achieving state-of-the-art performance while drastically reducing computational cost during inference. Compared to existing methods, SBDDM achieves a relative improvement of up to 10.43% and 18.10% for Near-OOD and Far-OOD detection, making it a practical building block for real-time, reliable computer-aided diagnosis.

DiSC-Med: Diffusion-based Semantic Communications for Robust Medical Image Transmission

Fupei Guo, Hao Zheng, Xiang Zhang, Li Chen, Yue Wang, Songyang Zhang

arxiv logopreprintJul 31 2025
The rapid development of artificial intelligence has driven smart health with next-generation wireless communication technologies, stimulating exciting applications in remote diagnosis and intervention. To enable a timely and effective response for remote healthcare, efficient transmission of medical data through noisy channels with limited bandwidth emerges as a critical challenge. In this work, we propose a novel diffusion-based semantic communication framework, namely DiSC-Med, for the medical image transmission, where medical-enhanced compression and denoising blocks are developed for bandwidth efficiency and robustness, respectively. Unlike conventional pixel-wise communication framework, our proposed DiSC-Med is able to capture the key semantic information and achieve superior reconstruction performance with ultra-high bandwidth efficiency against noisy channels. Extensive experiments on real-world medical datasets validate the effectiveness of our framework, demonstrating its potential for robust and efficient telehealth applications.
Page 22 of 1061052 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.