Sort by:
Page 20 of 55546 results

MoNetV2: Enhanced Motion Network for Freehand 3D Ultrasound Reconstruction

Mingyuan Luo, Xin Yang, Zhongnuo Yan, Yan Cao, Yuanji Zhang, Xindi Hu, Jin Wang, Haoxuan Ding, Wei Han, Litao Sun, Dong Ni

arxiv logopreprintJun 16 2025
Three-dimensional (3D) ultrasound (US) aims to provide sonographers with the spatial relationships of anatomical structures, playing a crucial role in clinical diagnosis. Recently, deep-learning-based freehand 3D US has made significant advancements. It reconstructs volumes by estimating transformations between images without external tracking. However, image-only reconstruction poses difficulties in reducing cumulative drift and further improving reconstruction accuracy, particularly in scenarios involving complex motion trajectories. In this context, we propose an enhanced motion network (MoNetV2) to enhance the accuracy and generalizability of reconstruction under diverse scanning velocities and tactics. First, we propose a sensor-based temporal and multi-branch structure that fuses image and motion information from a velocity perspective to improve image-only reconstruction accuracy. Second, we devise an online multi-level consistency constraint that exploits the inherent consistency of scans to handle various scanning velocities and tactics. This constraint exploits both scan-level velocity consistency, path-level appearance consistency, and patch-level motion consistency to supervise inter-frame transformation estimation. Third, we distill an online multi-modal self-supervised strategy that leverages the correlation between network estimation and motion information to further reduce cumulative errors. Extensive experiments clearly demonstrate that MoNetV2 surpasses existing methods in both reconstruction quality and generalizability performance across three large datasets.

Unsupervised risk factor identification across cancer types and data modalities via explainable artificial intelligence

Maximilian Ferle, Jonas Ader, Thomas Wiemers, Nora Grieb, Adrian Lindenmeyer, Hans-Jonas Meyer, Thomas Neumuth, Markus Kreuz, Kristin Reiche, Maximilian Merz

arxiv logopreprintJun 15 2025
Risk stratification is a key tool in clinical decision-making, yet current approaches often fail to translate sophisticated survival analysis into actionable clinical criteria. We present a novel method for unsupervised machine learning that directly optimizes for survival heterogeneity across patient clusters through a differentiable adaptation of the multivariate logrank statistic. Unlike most existing methods that rely on proxy metrics, our approach represents novel methodology for training any neural network architecture on any data modality to identify prognostically distinct patient groups. We thoroughly evaluate the method in simulation experiments and demonstrate its utility in practice by applying it to two distinct cancer types: analyzing laboratory parameters from multiple myeloma patients and computed tomography images from non-small cell lung cancer patients, identifying prognostically distinct patient subgroups with significantly different survival outcomes in both cases. Post-hoc explainability analyses uncover clinically meaningful features determining the group assignments which align well with established risk factors and thus lend strong weight to the methods utility. This pan-cancer, model-agnostic approach represents a valuable advancement in clinical risk stratification, enabling the discovery of novel prognostic signatures across diverse data types while providing interpretable results that promise to complement treatment personalization and clinical decision-making in oncology and beyond.

Boundary-Aware Vision Transformer for Angiography Vascular Network Segmentation

Nabil Hezil, Suraj Singh, Vita Vlasova, Oleg Rogov, Ahmed Bouridane, Rifat Hamoudi

arxiv logopreprintJun 15 2025
Accurate segmentation of vascular structures in coronary angiography remains a core challenge in medical image analysis due to the complexity of elongated, thin, and low-contrast vessels. Classical convolutional neural networks (CNNs) often fail to preserve topological continuity, while recent Vision Transformer (ViT)-based models, although strong in global context modeling, lack precise boundary awareness. In this work, we introduce BAVT, a Boundary-Aware Vision Transformer, a ViT-based architecture enhanced with an edge-aware loss that explicitly guides the segmentation toward fine-grained vascular boundaries. Unlike hybrid transformer-CNN models, BAVT retains a minimal, scalable structure that is fully compatible with large-scale vision foundation model (VFM) pretraining. We validate our approach on the DCA-1 coronary angiography dataset, where BAVT achieves superior performance across medical image segmentation metrics outperforming both CNN and hybrid baselines. These results demonstrate the effectiveness of combining plain ViT encoders with boundary-aware supervision for clinical-grade vascular segmentation.

GM-LDM: Latent Diffusion Model for Brain Biomarker Identification through Functional Data-Driven Gray Matter Synthesis

Hu Xu, Yang Jingling, Jia Sihan, Bi Yuda, Calhoun Vince

arxiv logopreprintJun 15 2025
Generative models based on deep learning have shown significant potential in medical imaging, particularly for modality transformation and multimodal fusion in MRI-based brain imaging. This study introduces GM-LDM, a novel framework that leverages the latent diffusion model (LDM) to enhance the efficiency and precision of MRI generation tasks. GM-LDM integrates a 3D autoencoder, pre-trained on the large-scale ABCD MRI dataset, achieving statistical consistency through KL divergence loss. We employ a Vision Transformer (ViT)-based encoder-decoder as the denoising network to optimize generation quality. The framework flexibly incorporates conditional data, such as functional network connectivity (FNC) data, enabling personalized brain imaging, biomarker identification, and functional-to-structural information translation for brain diseases like schizophrenia.

Hierarchical Deep Feature Fusion and Ensemble Learning for Enhanced Brain Tumor MRI Classification

Zahid Ullah, Jihie Kim

arxiv logopreprintJun 14 2025
Accurate brain tumor classification is crucial in medical imaging to ensure reliable diagnosis and effective treatment planning. This study introduces a novel double ensembling framework that synergistically combines pre-trained deep learning (DL) models for feature extraction with optimized machine learning (ML) classifiers for robust classification. The framework incorporates comprehensive preprocessing and data augmentation of brain magnetic resonance images (MRI), followed by deep feature extraction using transfer learning with pre-trained Vision Transformer (ViT) networks. The novelty lies in the dual-level ensembling strategy: feature-level ensembling, which integrates deep features from the top-performing ViT models, and classifier-level ensembling, which aggregates predictions from hyperparameter-optimized ML classifiers. Experiments on two public Kaggle MRI brain tumor datasets demonstrate that this approach significantly surpasses state-of-the-art methods, underscoring the importance of feature and classifier fusion. The proposed methodology also highlights the critical roles of hyperparameter optimization (HPO) and advanced preprocessing techniques in improving diagnostic accuracy and reliability, advancing the integration of DL and ML for clinically relevant medical image analysis.

Inference of single cell profiles from histology stains with the Single-Cell omics from Histology Analysis Framework (SCHAF)

Comiter, C., Chen, X., Vaishnav, E. D., Kobayashi-Kirschvink, K. J., Ciapmricotti, M., Zhang, K., Murray, J., Monticolo, F., Qi, J., Tanaka, R., Brodowska, S. E., Li, B., Yang, Y., Rodig, S. J., Karatza, A., Quintanal Villalonga, A., Turner, M., Pfaff, K. L., Jane-Valbuena, J., Slyper, M., Waldman, J., Vigneau, S., Wu, J., Blosser, T. R., Segerstolpe, A., Abravanel, D., Wagle, N., Demehri, S., Zhuang, X., Rudin, C. M., Klughammer, J., Rozenblatt-Rosen, O., Stultz, C. M., Shu, J., Regev, A.

biorxiv logopreprintJun 13 2025
Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues--including lung cancer, metastatic breast cancer, placentae, and whole mouse pups--training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.

3D Skin Segmentation Methods in Medical Imaging: A Comparison

Martina Paccini, Giuseppe Patanè

arxiv logopreprintJun 13 2025
Automatic segmentation of anatomical structures is critical in medical image analysis, aiding diagnostics and treatment planning. Skin segmentation plays a key role in registering and visualising multimodal imaging data. 3D skin segmentation enables applications in personalised medicine, surgical planning, and remote monitoring, offering realistic patient models for treatment simulation, procedural visualisation, and continuous condition tracking. This paper analyses and compares algorithmic and AI-driven skin segmentation approaches, emphasising key factors to consider when selecting a strategy based on data availability and application requirements. We evaluate an iterative region-growing algorithm and the TotalSegmentator, a deep learning-based approach, across different imaging modalities and anatomical regions. Our tests show that AI segmentation excels in automation but struggles with MRI due to its CT-based training, while the graphics-based method performs better for MRIs but introduces more noise. AI-driven segmentation also automates patient bed removal in CT, whereas the graphics-based method requires manual intervention.

Taming Stable Diffusion for Computed Tomography Blind Super-Resolution

Chunlei Li, Yilei Shi, Haoxi Hu, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 13 2025
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.

Fast MRI of bones in the knee -- An AI-driven reconstruction approach for adiabatic inversion recovery prepared ultra-short echo time sequences

Philipp Hans Nunn, Henner Huflage, Jan-Peter Grunz, Philipp Gruschwitz, Oliver Schad, Thorsten Alexander Bley, Johannes Tran-Gia, Tobias Wech

arxiv logopreprintJun 13 2025
Purpose: Inversion recovery prepared ultra-short echo time (IR-UTE)-based MRI enables radiation-free visualization of osseous tissue. However, sufficient signal-to-noise ratio (SNR) can only be obtained with long acquisition times. This study proposes a data-driven approach to reconstruct undersampled IR-UTE knee data, thereby accelerating MR-based 3D imaging of bones. Methods: Data were acquired with a 3D radial IR-UTE pulse sequence, implemented using the open-source framework Pulseq. A denoising convolutional neural network (DnCNN) was trained in a supervised fashion using data from eight healthy subjects. Conjugate gradient sensitivity encoding (CG-SENSE) reconstructions of different retrospectively undersampled subsets (corresponding to 2.5-min, 5-min and 10-min acquisition times) were paired with the respective reference dataset reconstruction (30-min acquisition time). The DnCNN was then integrated into a Landweber-based reconstruction algorithm, enabling physics-based iterative reconstruction. Quantitative evaluations of the approach were performed using one prospectively accelerated scan as well as retrospectively undersampled datasets from four additional healthy subjects, by assessing the structural similarity index measure (SSIM), the peak signal-to-noise ratio (PSNR), the normalized root mean squared error (NRMSE), and the perceptual sharpness index (PSI). Results: Both the reconstructions of prospective and retrospective acquisitions showed good agreement with the reference dataset, indicating high image quality, particularly for an acquisition time of 5 min. The proposed method effectively preserves contrast and structural details while suppressing noise, albeit with a slight reduction in sharpness. Conclusion: The proposed method is poised to enable MR-based bone assessment in the knee within clinically feasible scan times.

Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis

Zuzanna Skorniewska, Bartlomiej W. Papiez

arxiv logopreprintJun 13 2025
The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.
Page 20 of 55546 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.