Sort by:
Page 2 of 54531 results

Deep learning-based segmentation of T1 and T2 cardiac MRI maps for automated disease detection

Andreea Bianca Popescu, Andreas Seitz, Heiko Mahrholdt, Jens Wetzl, Athira Jacob, Lucian Mihai Itu, Constantin Suciu, Teodora Chitiboi

arxiv logopreprintJul 1 2025
Objectives Parametric tissue mapping enables quantitative cardiac tissue characterization but is limited by inter-observer variability during manual delineation. Traditional approaches relying on average relaxation values and single cutoffs may oversimplify myocardial complexity. This study evaluates whether deep learning (DL) can achieve segmentation accuracy comparable to inter-observer variability, explores the utility of statistical features beyond mean T1/T2 values, and assesses whether machine learning (ML) combining multiple features enhances disease detection. Materials & Methods T1 and T2 maps were manually segmented. The test subset was independently annotated by two observers, and inter-observer variability was assessed. A DL model was trained to segment left ventricle blood pool and myocardium. Average (A), lower quartile (LQ), median (M), and upper quartile (UQ) were computed for the myocardial pixels and employed in classification by applying cutoffs or in ML. Dice similarity coefficient (DICE) and mean absolute percentage error evaluated segmentation performance. Bland-Altman plots assessed inter-user and model-observer agreement. Receiver operating characteristic analysis determined optimal cutoffs. Pearson correlation compared features from model and manual segmentations. F1-score, precision, and recall evaluated classification performance. Wilcoxon test assessed differences between classification methods, with p < 0.05 considered statistically significant. Results 144 subjects were split into training (100), validation (15) and evaluation (29) subsets. Segmentation model achieved a DICE of 85.4%, surpassing inter-observer agreement. Random forest applied to all features increased F1-score (92.7%, p < 0.001). Conclusion DL facilitates segmentation of T1/ T2 maps. Combining multiple features with ML improves disease detection.

Bridging Classical and Learning-based Iterative Registration through Deep Equilibrium Models

Yi Zhang, Yidong Zhao, Qian Tao

arxiv logopreprintJul 1 2025
Deformable medical image registration is traditionally formulated as an optimization problem. While classical methods solve this problem iteratively, recent learning-based approaches use recurrent neural networks (RNNs) to mimic this process by unrolling the prediction of deformation fields in a fixed number of steps. However, classical methods typically converge after sufficient iterations, but learning-based unrolling methods lack a theoretical convergence guarantee and show instability empirically. In addition, unrolling methods have a practical bottleneck at training time: GPU memory usage grows linearly with the unrolling steps due to backpropagation through time (BPTT). To address both theoretical and practical challenges, we propose DEQReg, a novel registration framework based on Deep Equilibrium Models (DEQ), which formulates registration as an equilibrium-seeking problem, establishing a natural connection between classical optimization and learning-based unrolling methods. DEQReg maintains constant memory usage, enabling theoretically unlimited iteration steps. Through extensive evaluation on the public brain MRI and lung CT datasets, we show that DEQReg can achieve competitive registration performance, while substantially reducing memory consumption compared to state-of-the-art unrolling methods. We also reveal an intriguing phenomenon: the performance of existing unrolling methods first increases slightly then degrades irreversibly when the inference steps go beyond the training configuration. In contrast, DEQReg achieves stable convergence with its inbuilt equilibrium-seeking mechanism, bridging the gap between classical optimization-based and modern learning-based registration methods.

ADAptation: Reconstruction-based Unsupervised Active Learning for Breast Ultrasound Diagnosis

Yaofei Duan, Yuhao Huang, Xin Yang, Luyi Han, Xinyu Xie, Zhiyuan Zhu, Ping He, Ka-Hou Chan, Ligang Cui, Sio-Kei Im, Dong Ni, Tao Tan

arxiv logopreprintJul 1 2025
Deep learning-based diagnostic models often suffer performance drops due to distribution shifts between training (source) and test (target) domains. Collecting and labeling sufficient target domain data for model retraining represents an optimal solution, yet is limited by time and scarce resources. Active learning (AL) offers an efficient approach to reduce annotation costs while maintaining performance, but struggles to handle the challenge posed by distribution variations across different datasets. In this study, we propose a novel unsupervised Active learning framework for Domain Adaptation, named ADAptation, which efficiently selects informative samples from multi-domain data pools under limited annotation budget. As a fundamental step, our method first utilizes the distribution homogenization capabilities of diffusion models to bridge cross-dataset gaps by translating target images into source-domain style. We then introduce two key innovations: (a) a hypersphere-constrained contrastive learning network for compact feature clustering, and (b) a dual-scoring mechanism that quantifies and balances sample uncertainty and representativeness. Extensive experiments on four breast ultrasound datasets (three public and one in-house/multi-center) across five common deep classifiers demonstrate that our method surpasses existing strong AL-based competitors, validating its effectiveness and generalization for clinical domain adaptation. The code is available at the anonymized link: https://github.com/miccai25-966/ADAptation.

Mind the Detail: Uncovering Clinically Relevant Image Details in Accelerated MRI with Semantically Diverse Reconstructions

Jan Nikolas Morshuis, Christian Schlarmann, Thomas Küstner, Christian F. Baumgartner, Matthias Hein

arxiv logopreprintJul 1 2025
In recent years, accelerated MRI reconstruction based on deep learning has led to significant improvements in image quality with impressive results for high acceleration factors. However, from a clinical perspective image quality is only secondary; much more important is that all clinically relevant information is preserved in the reconstruction from heavily undersampled data. In this paper, we show that existing techniques, even when considering resampling for diffusion-based reconstruction, can fail to reconstruct small and rare pathologies, thus leading to potentially wrong diagnosis decisions (false negatives). To uncover the potentially missing clinical information we propose ``Semantically Diverse Reconstructions'' (\SDR), a method which, given an original reconstruction, generates novel reconstructions with enhanced semantic variability while all of them are fully consistent with the measured data. To evaluate \SDR automatically we train an object detector on the fastMRI+ dataset. We show that \SDR significantly reduces the chance of false-negative diagnoses (higher recall) and improves mean average precision compared to the original reconstructions. The code is available on https://github.com/NikolasMorshuis/SDR

Medical Image Segmentation Using Advanced Unet: VMSE-Unet and VM-Unet CBAM+

Sayandeep Kanrar, Raja Piyush, Qaiser Razi, Debanshi Chakraborty, Vikas Hassija, GSS Chalapathi

arxiv logopreprintJul 1 2025
In this paper, we present the VMSE U-Net and VM-Unet CBAM+ model, two cutting-edge deep learning architectures designed to enhance medical image segmentation. Our approach integrates Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) techniques into the traditional VM U-Net framework, significantly improving segmentation accuracy, feature localization, and computational efficiency. Both models show superior performance compared to the baseline VM-Unet across multiple datasets. Notably, VMSEUnet achieves the highest accuracy, IoU, precision, and recall while maintaining low loss values. It also exhibits exceptional computational efficiency with faster inference times and lower memory usage on both GPU and CPU. Overall, the study suggests that the enhanced architecture VMSE-Unet is a valuable tool for medical image analysis. These findings highlight its potential for real-world clinical applications, emphasizing the importance of further research to optimize accuracy, robustness, and computational efficiency.

Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound

Jian Wang, Qiongying Ni, Hongkui Yu, Ruixuan Yao, Jinqiao Ying, Bin Zhang, Xingyi Yang, Jin Peng, Jiongquan Chen, Junxuan Yu, Wenlong Shi, Chaoyu Chen, Zhongnuo Yan, Mingyuan Luo, Gaocheng Cai, Dong Ni, Jing Lu, Xin Yang

arxiv logopreprintJul 1 2025
Accurate fetal birth weight (FBW) estimation is essential for optimizing delivery decisions and reducing perinatal mortality. However, clinical methods for FBW estimation are inefficient, operator-dependent, and challenging to apply in cases of complex fetal anatomy. Existing deep learning methods are based on 2D standard ultrasound (US) images or videos that lack spatial information, limiting their prediction accuracy. In this study, we propose the first method for directly estimating FBW from 3D fetal US volumes. Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF). The MFFN effectively extracts and fuses multi-scale features under sparse supervision by incorporating channel attention, spatial attention, and a ranking-based loss function. SSLF generates synthetic samples by simply combining fetal head and abdomen data from different fetuses, utilizing semi-supervised learning to improve prediction performance. Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4\pm155.9$ $g$ and a mean absolute percentage error of $5.1\pm4.6$%, outperforming existing methods and approaching the accuracy of a senior doctor. Code is available at: https://github.com/Qioy-i/EFW.

MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis

Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo

arxiv logopreprintJul 1 2025
Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.

Scout-Dose-TCM: Direct and Prospective Scout-Based Estimation of Personalized Organ Doses from Tube Current Modulated CT Exams

Maria Jose Medrano, Sen Wang, Liyan Sun, Abdullah-Al-Zubaer Imran, Jennie Cao, Grant Stevens, Justin Ruey Tse, Adam S. Wang

arxiv logopreprintJun 30 2025
This study proposes Scout-Dose-TCM for direct, prospective estimation of organ-level doses under tube current modulation (TCM) and compares its performance to two established methods. We analyzed contrast-enhanced chest-abdomen-pelvis CT scans from 130 adults (120 kVp, TCM). Reference doses for six organs (lungs, kidneys, liver, pancreas, bladder, spleen) were calculated using MC-GPU and TotalSegmentator. Based on these, we trained Scout-Dose-TCM, a deep learning model that predicts organ doses corresponding to discrete cosine transform (DCT) basis functions, enabling real-time estimates for any TCM profile. The model combines a feature learning module that extracts contextual information from lateral and frontal scouts and scan range with a dose learning module that output DCT-based dose estimates. A customized loss function incorporated the DCT formulation during training. For comparison, we implemented size-specific dose estimation per AAPM TG 204 (Global CTDIvol) and its organ-level TCM-adapted version (Organ CTDIvol). A 5-fold cross-validation assessed generalizability by comparing mean absolute percentage dose errors and r-squared correlations with benchmark doses. Average absolute percentage errors were 13% (Global CTDIvol), 9% (Organ CTDIvol), and 7% (Scout-Dose-TCM), with bladder showing the largest discrepancies (15%, 13%, and 9%). Statistical tests confirmed Scout-Dose-TCM significantly reduced errors vs. Global CTDIvol across most organs and improved over Organ CTDIvol for the liver, bladder, and pancreas. It also achieved higher r-squared values, indicating stronger agreement with Monte Carlo benchmarks. Scout-Dose-TCM outperformed Global CTDIvol and was comparable to or better than Organ CTDIvol, without requiring organ segmentations at inference, demonstrating its promise as a tool for prospective organ-level dose estimation in CT.

Brain Tumor Detection through Thermal Imaging and MobileNET

Roham Maiti, Debasmita Bhoumik

arxiv logopreprintJun 30 2025
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.

Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound

Gijs Luijten, Roberto Maria Scardigno, Lisle Faray de Paiva, Peter Hoyer, Jens Kleesiek, Domenico Buongiorno, Vitoantonio Bevilacqua, Jan Egger

arxiv logopreprintJun 30 2025
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
Page 2 of 54531 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.