Sort by:
Page 14 of 54531 results

Towards Classifying Histopathological Microscope Images as Time Series Data

Sungrae Hong, Hyeongmin Park, Youngsin Ko, Sol Lee, Bryan Wong, Mun Yong Yi

arxiv logopreprintJun 19 2025
As the frontline data for cancer diagnosis, microscopic pathology images are fundamental for providing patients with rapid and accurate treatment. However, despite their practical value, the deep learning community has largely overlooked their usage. This paper proposes a novel approach to classifying microscopy images as time series data, addressing the unique challenges posed by their manual acquisition and weakly labeled nature. The proposed method fits image sequences of varying lengths to a fixed-length target by leveraging Dynamic Time-series Warping (DTW). Attention-based pooling is employed to predict the class of the case simultaneously. We demonstrate the effectiveness of our approach by comparing performance with various baselines and showcasing the benefits of using various inference strategies in achieving stable and reliable results. Ablation studies further validate the contribution of each component. Our approach contributes to medical image analysis by not only embracing microscopic images but also lifting them to a trustworthy level of performance.

AGE-US: automated gestational age estimation based on fetal ultrasound images

César Díaz-Parga, Marta Nuñez-Garcia, Maria J. Carreira, Gabriel Bernardino, Nicolás Vila-Blanco

arxiv logopreprintJun 19 2025
Being born small carries significant health risks, including increased neonatal mortality and a higher likelihood of future cardiac diseases. Accurate estimation of gestational age is critical for monitoring fetal growth, but traditional methods, such as estimation based on the last menstrual period, are in some situations difficult to obtain. While ultrasound-based approaches offer greater reliability, they rely on manual measurements that introduce variability. This study presents an interpretable deep learning-based method for automated gestational age calculation, leveraging a novel segmentation architecture and distance maps to overcome dataset limitations and the scarcity of segmentation masks. Our approach achieves performance comparable to state-of-the-art models while reducing complexity, making it particularly suitable for resource-constrained settings and with limited annotated data. Furthermore, our results demonstrate that the use of distance maps is particularly suitable for estimating femur endpoints.

Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction

Vincent Roca, Marc Tommasi, Paul Andrey, Aurélien Bellet, Markus D. Schirmer, Hilde Henon, Laurent Puy, Julien Ramon, Grégory Kuchcinski, Martin Bretzner, Renaud Lopes

arxiv logopreprintJun 18 2025
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.

Automated MRI Tumor Segmentation using hybrid U-Net with Transformer and Efficient Attention

Syed Haider Ali, Asrar Ahmad, Muhammad Ali, Asifullah Khan, Muhammad Shahban, Nadeem Shaukat

arxiv logopreprintJun 18 2025
Cancer is an abnormal growth with potential to invade locally and metastasize to distant organs. Accurate auto-segmentation of the tumor and surrounding normal tissues is required for radiotherapy treatment plan optimization. Recent AI-based segmentation models are generally trained on large public datasets, which lack the heterogeneity of local patient populations. While these studies advance AI-based medical image segmentation, research on local datasets is necessary to develop and integrate AI tumor segmentation models directly into hospital software for efficient and accurate oncology treatment planning and execution. This study enhances tumor segmentation using computationally efficient hybrid UNet-Transformer models on magnetic resonance imaging (MRI) datasets acquired from a local hospital under strict privacy protection. We developed a robust data pipeline for seamless DICOM extraction and preprocessing, followed by extensive image augmentation to ensure model generalization across diverse clinical settings, resulting in a total dataset of 6080 images for training. Our novel architecture integrates UNet-based convolutional neural networks with a transformer bottleneck and complementary attention modules, including efficient attention, Squeeze-and-Excitation (SE) blocks, Convolutional Block Attention Module (CBAM), and ResNeXt blocks. To accelerate convergence and reduce computational demands, we used a maximum batch size of 8 and initialized the encoder with pretrained ImageNet weights, training the model on dual NVIDIA T4 GPUs via checkpointing to overcome Kaggle's runtime limits. Quantitative evaluation on the local MRI dataset yielded a Dice similarity coefficient of 0.764 and an Intersection over Union (IoU) of 0.736, demonstrating competitive performance despite limited data and underscoring the importance of site-specific model development for clinical deployment.

Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration

Kyobin Choo, Hyunkyung Han, Jinyeong Kim, Chanyong Yoon, Seong Jae Hwang

arxiv logopreprintJun 18 2025
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.

CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation

Farheen Ramzan, Yusuf Kiberu, Nikesh Jathanna, Shahnaz Jamil-Copley, Richard H. Clayton, Chen, Chen

arxiv logopreprintJun 18 2025
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task.

Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning

Chunlei Li, Jingyang Hou, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 18 2025
Medical report generation from imaging data remains a challenging task in clinical practice. While large language models (LLMs) show great promise in addressing this challenge, their effective integration with medical imaging data still deserves in-depth exploration. In this paper, we present MRG-LLM, a novel multimodal large language model (MLLM) that combines a frozen LLM with a learnable visual encoder and introduces a dynamic prompt customization mechanism. Our key innovation lies in generating instance-specific prompts tailored to individual medical images through conditional affine transformations derived from visual features. We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation. Extensive experiments on IU X-ray and MIMIC-CXR datasets demonstrate that MRG-LLM achieves state-of-the-art performance in medical report generation. Our code will be made publicly available.

NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance

Anju Chhetri, Jari Korhonen, Prashnna Gyawali, Binod Bhattarai

arxiv logopreprintJun 18 2025
Ensuring reliability is paramount in deep learning, particularly within the domain of medical imaging, where diagnostic decisions often hinge on model outputs. The capacity to separate out-of-distribution (OOD) samples has proven to be a valuable indicator of a model's reliability in research. In medical imaging, this is especially critical, as identifying OOD inputs can help flag potential anomalies that might otherwise go undetected. While many OOD detection methods rely on feature or logit space representations, recent works suggest these approaches may not fully capture OOD diversity. To address this, we propose a novel OOD scoring mechanism, called NERO, that leverages neuron-level relevance at the feature layer. Specifically, we cluster neuron-level relevance for each in-distribution (ID) class to form representative centroids and introduce a relevance distance metric to quantify a new sample's deviation from these centroids, enhancing OOD separability. Additionally, we refine performance by incorporating scaled relevance in the bias term and combining feature norms. Our framework also enables explainable OOD detection. We validate its effectiveness across multiple deep learning architectures on the gastrointestinal imaging benchmarks Kvasir and GastroVision, achieving improvements over state-of-the-art OOD detection methods.

Brain Stroke Classification Using Wavelet Transform and MLP Neural Networks on DWI MRI Images

Mana Mohammadi, Amirhesam Jafari Rad, Ashkan Behrouzi

arxiv logopreprintJun 18 2025
This paper presents a lightweight framework for classifying brain stroke types from Diffusion-Weighted Imaging (DWI) MRI scans, employing a Multi-Layer Perceptron (MLP) neural network with Wavelet Transform for feature extraction. Accurate and timely stroke detection is critical for effective treatment and improved patient outcomes in neuroimaging. While Convolutional Neural Networks (CNNs) are widely used for medical image analysis, their computational complexity often hinders deployment in resource-constrained clinical settings. In contrast, our approach combines Wavelet Transform with a compact MLP to achieve efficient and accurate stroke classification. Using the "Brain Stroke MRI Images" dataset, our method yields classification accuracies of 82.0% with the "db4" wavelet (level 3 decomposition) and 86.00% with the "Haar" wavelet (level 2 decomposition). This analysis highlights a balance between diagnostic accuracy and computational efficiency, offering a practical solution for automated stroke diagnosis. Future research will focus on enhancing model robustness and integrating additional MRI modalities for comprehensive stroke assessment.

DM-FNet: Unified multimodal medical image fusion via diffusion process-trained encoder-decoder

Dan He, Weisheng Li, Guofen Wang, Yuping Huang, Shiqiang Liu

arxiv logopreprintJun 18 2025
Multimodal medical image fusion (MMIF) extracts the most meaningful information from multiple source images, enabling a more comprehensive and accurate diagnosis. Achieving high-quality fusion results requires a careful balance of brightness, color, contrast, and detail; this ensures that the fused images effectively display relevant anatomical structures and reflect the functional status of the tissues. However, existing MMIF methods have limited capacity to capture detailed features during conventional training and suffer from insufficient cross-modal feature interaction, leading to suboptimal fused image quality. To address these issues, this study proposes a two-stage diffusion model-based fusion network (DM-FNet) to achieve unified MMIF. In Stage I, a diffusion process trains UNet for image reconstruction. UNet captures detailed information through progressive denoising and represents multilevel data, providing a rich set of feature representations for the subsequent fusion network. In Stage II, noisy images at various steps are input into the fusion network to enhance the model's feature recognition capability. Three key fusion modules are also integrated to process medical images from different modalities adaptively. Ultimately, the robust network structure and a hybrid loss function are integrated to harmonize the fused image's brightness, color, contrast, and detail, enhancing its quality and information density. The experimental results across various medical image types demonstrate that the proposed method performs exceptionally well regarding objective evaluation metrics. The fused image preserves appropriate brightness, a comprehensive distribution of radioactive tracers, rich textures, and clear edges. The code is available at https://github.com/HeDan-11/DM-FNet.
Page 14 of 54531 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.