Sort by:
Page 94 of 2262251 results

Can automation and artificial intelligence reduce echocardiography scan time and ultrasound system interaction?

Hollitt KJ, Milanese S, Joseph M, Perry R

pubmed logopapersJun 16 2025
The number of patients referred for and requiring a transthoracic echocardiogram (TTE) has increased over the years resulting in more cardiac sonographers reporting work related musculoskeletal pain. We sought to determine if a scanning protocol that replaced conventional workflows with advanced technologies such as multiplane imaging, artificial intelligence (AI) and automation could be used to optimise conventional workflows and potentially reduce ergonomic risk for cardiac sonographers. The aim was to assess whether this alternate protocol could reduce active scanning time as well as interaction with the ultrasound machine compared to a standard echocardiogram without a reduction in image quality and interpretability. Volunteer participants were recruited for a study that comprised of two TTE's with separate protocols. Both were clinically complete, but Protocol A combined automation, AI assisted acquisition and measurement, simultaneous and multiplane imaging whilst Protocol B reflected a standard scanning protocol without these additional technologies. Keystrokes were significantly reduced with the advanced protocol as compared to the typical protocol (230.9 ± 24.2 vs. 502.8 ± 56.2; difference 271.9 ± 61.3, p < 0.001). Furthermore, there was a reduction in scan time with protocol A compared to protocol B the standard TTE protocol (13.4 ± 2.3 min vs. 18.0 ± 2.6 min; difference 4.6 ± 2.9 min, p < 0.001) as well as a decrease of approximately 27% in the time the sonographers were required to reach beyond a neutral position on the ultrasound console. A TTE protocol that embraces modern technologies such as AI, automation, and multiplane imaging shows potential for a reduction in ultrasound keystrokes and scan time without a reduction in quality and interpretability. This may aid a reduction in ergonomic workload as compared to a standard TTE.

AI based automatic measurement of split renal function in [<sup>18</sup>F]PSMA-1007 PET/CT.

Valind K, Ulén J, Gålne A, Jögi J, Minarik D, Trägårdh E

pubmed logopapersJun 16 2025
Prostate-specific membrane antigen (PSMA) is an important target for positron emission tomography (PET) with computed tomography (CT) in prostate cancer. In addition to overexpression in prostate cancer cells, PSMA is expressed in healthy cells in the proximal tubules of the kidneys. Consequently, PSMA PET is being explored for renal functional imaging. Left and right renal uptake of PSMA targeted radiopharmaceuticals have shown strong correlations to split renal function (SRF) as determined by other methods. Manual segmentation of kidneys in PET images is, however, time consuming, making this method of measuring SRF impractical. In this study, we designed, trained and validated an artificial intelligence (AI) model for automatic renal segmentation and measurement of SRF in [<sup>18</sup>F]PSMA-1007 PET images. Kidneys were segmented in 135 [<sup>18</sup>F]PSMA-1007 PET/CT studies used to train the AI model. The model was evaluated in 40 test studies. Left renal function percentage (LRF%) measurements ranged from 40 to 67%. Spearman correlation coefficients for LRF% measurements ranged between 0.98 and 0.99 when comparing segmentations made by 3 human readers and the AI model. The largest LRF% difference between any measurements in a single case was 3 percentage points. The AI model produced measurements similar to those of human readers. Automatic measurement of SRF in PSMA PET is feasible. A potential use could be to provide additional data in investigation of renal functional impairment in patients treated for prostate cancer.

Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024.

Sun YY, Shi XT, Xu LL

pubmed logopapersJun 16 2025
With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed bibliometric methods for a comprehensive analysis spanning from 2004 to 2024, analyzing 3523 articles from 2176 institutions in 82 countries/regions. Over this period, publications on ultrasound diagnosis of breast cancer showed a fluctuating growth trend from 2004 to 2024. Notably, China, Seoul National University and Kim EK emerged as leading contributors in ultrasound for breast cancer detection, with the most published and cited journals being Ultrasound Med Biol and Radiology. The research spots in this area included "breast lesion", "dense breast" and "breast-conserving surgery", while "machine learning", "ultrasonic imaging", "convolutional neural network", "case report", "pathological complete response", "deep learning", "artificial intelligence" and "classification" are anticipated to become future research frontiers. This groundbreaking bibliometric analysis and visualization of ultrasonic breast cancer diagnosis publications offer clinical medical professionals a reliable research focus and direction.

Two-stage convolutional neural network for segmentation and detection of carotid web on CT angiography.

Kuang H, Tan X, Bala F, Huang J, Zhang J, Alhabli I, Benali F, Singh N, Ganesh A, Coutts SB, Almekhlafi MA, Goyal M, Hill MD, Qiu W, Menon BK

pubmed logopapersJun 16 2025
Carotid web (CaW) is a risk factor for ischemic stroke, mainly in young patients with stroke of undetermined etiology. Its detection is challenging, especially among non-experienced physicians. We included patients with CaW from six international trials and registries of patients with acute ischemic stroke. Identification and manual segmentations of CaW were performed by three trained radiologists. We designed a two-stage segmentation strategy based on a convolutional neural network (CNN). At the first stage, the two carotid arteries were segmented using a U-shaped CNN. At the second stage, the segmentation of the CaW was first confined to the vicinity of the carotid arteries. Then, the carotid bifurcation region was localized by the proposed carotid bifurcation localization algorithm followed by another U-shaped CNN. A volume threshold based on the derived CaW manual segmentation statistics was then used to determine whether or not CaW was present. We included 58 patients (median (IQR) age 59 (50-75) years, 60% women). The Dice similarity coefficient and 95th percentile Hausdorff distance between manually segmented CaW and the algorithm segmented CaW were 63.20±19.03% and 1.19±0.9 mm, respectively. Using a volume threshold of 5 mm<sup>3</sup>, binary classification detection metrics for CaW on a single artery were as follows: accuracy: 92.2% (95% CI 87.93% to 96.55%), precision: 94.83% (95% CI 88.68% to 100.00%), sensitivity: 90.16% (95% CI 82.16% to 96.97%), specificity: 94.55% (95% CI 88.0% to 100.0%), F1 measure: 0.9244 (95% CI 0.8679 to 0.9692), area under the curve: 0.9235 (95%CI 0.8726 to 0.9688). The proposed two-stage method enables reliable segmentation and detection of CaW from head and neck CT angiography.

First experiences with an adaptive pelvic radiotherapy system: Analysis of treatment times and learning curve.

Benzaquen D, Taussky D, Fave V, Bouveret J, Lamine F, Letenneur G, Halley A, Solmaz Y, Champion A

pubmed logopapersJun 16 2025
The Varian Ethos system allows not only on-treatment-table plan adaptation but also automated contouring with the aid of artificial intelligence. This study evaluates the initial clinical implementation of an adaptive pelvic radiotherapy system, focusing on the treatment times and the associated learning curve. We analyzed the data from 903 consecutive treatments for most urogenital cancers at our center. The treatment time was calculated from the time of the first cone-beam computed tomography scan used for replanning until the end of treatment. To calculate whether treatments were generally shorter over time, we divided the date of the first treatment into 3-months quartiles. Differences between the groups were calculated using t-tests. The mean time from the first cone-beam computed tomography scan to the end of treatment was 25.9min (standard deviation: 6.9min). Treatment time depended on the number of planning target volumes and treatment of the pelvic lymph nodes. The mean time from cone-beam computed tomography to the end of treatment was 37 % longer if the pelvic lymph nodes were treated and 26 % longer if there were more than two planning target volumes. There was a learning curve: in linear regression analysis, both quartiles of months of treatment (odds ratio [OR]: 1.3, 95 % confidence interval [CI]: 1.8-0.70, P<0.001) and the number of planning target volumes (OR: 3.0, 95 % CI: 2.6-3.4, P<0.001) were predictive of treatment time. Approximately two-thirds of the treatments were delivered within 33min. Treatment time was strongly dependent on the number of separate planning target volumes. There was a continuous learning curve.

Kernelized weighted local information based picture fuzzy clustering with multivariate coefficient of variation and modified total Bregman divergence measure for brain MRI image segmentation.

Lohit H, Kumar D

pubmed logopapersJun 16 2025
This paper proposes a novel clustering method for noisy image segmentation using a kernelized weighted local information approach under the Picture Fuzzy Set (PFS) framework. Existing kernel-based fuzzy clustering methods struggle with noisy environments and non-linear structures, while intuitionistic fuzzy clustering methods face limitations in handling uncertainty in real-world medical images. To address these challenges, we introduce a local picture fuzzy information measure, developed for the first time using Multivariate Coefficient of Variation (MCV) theory, enhancing robustness in segmentation. Additionally, we integrate non-Euclidean distance measures, including kernel distance for local information computation and modified total Bregman divergence (MTBD) measure for improving clustering accuracy. This combination enhances both local spatial consistency and global membership estimation, leading to precise segmentation. The proposed method is extensively evaluated on synthetic images with Gaussian, Salt and Pepper, and mixed noise, along with Brainweb, IBSR, and MRBrainS18 MRI datasets under varying Rician noise levels, and a CT image template. Furthermore, we benchmark our proposed method against two deep learning-based segmentation models, ResNet34-LinkNet and patch-based U-Net. Experimental results demonstrate significant improvements in segmentation accuracy, as validated by metrics such as Dice Score, Fuzzy Performance Index, Modified Partition Entropy, Average Volume Difference (AVD), and the XB index. Additionally, Friedman's statistical test confirms the superior performance of our approach compared to state-of-the-art clustering methods for noisy image segmentation. To facilitate reproducibility, the implementation of our proposed method is made publicly available at: Google Drive Repository.

Roadmap analysis for coronary artery stenosis detection and percutaneous coronary intervention prediction in cardiac CT for transcatheter aortic valve replacement.

Fujito H, Jilaihawi H, Han D, Gransar H, Hashimoto H, Cho SW, Lee S, Gheyath B, Park RH, Patel D, Guo Y, Kwan AC, Hayes SW, Thomson LEJ, Slomka PJ, Dey D, Makkar R, Friedman JD, Berman DS

pubmed logopapersJun 16 2025
The new artificial intelligence-based software, Roadmap (HeartFlow), may assist in evaluating coronary artery stenosis during cardiac computed tomography (CT) for transcatheter aortic valve replacement (TAVR). Consecutive TAVR candidates who underwent both cardiac CT angiography (CTA) and invasive coronary angiography were enrolled. We evaluated the ability of three methods to predict obstructive coronary artery disease (CAD), defined as ≥50 ​% stenosis on quantitative coronary angiography (QCA), and the need for percutaneous coronary intervention (PCI) within one year: Roadmap, clinician CT specialists with Roadmap, and CT specialists alone. The area under the curve (AUC) for predicting QCA ≥50 ​% stenosis was similar for CT specialists with or without Roadmap (0.93 [0.85-0.97] vs. 0.94 [0.88-0.98], p ​= ​0.82), both significantly higher than Roadmap alone (all p ​< ​0.05). For PCI prediction, no significant differences were found between QCA and CT specialists, with or without Roadmap, while Roadmap's AUC was lower (all p ​< ​0.05). The negative predictive value (NPV) of CT specialists with Roadmap for ≥50 ​% stenosis was 97 ​%, and for PCI prediction, the NPV was comparable to QCA (p ​= ​1.00). In contrast, the positive predictive value (PPV) of Roadmap alone for ≥50 ​% stenosis was 49 ​%, the lowest among all approaches, with a similar trend observed for PCI prediction. While Roadmap alone is insufficient for clinical decision-making due to low PPV, Roadmap may serve as a "second observer", providing a supportive tool for CT specialists by flagging lesions for careful review, thereby enhancing workflow efficiency and maintaining high diagnostic accuracy with excellent NPV.

Precision Medicine and Machine Learning to predict critical disease and death due to Coronavirus disease 2019 (COVID-19).

Júnior WLDT, Danelli T, Tano ZN, Cassela PLCS, Trigo GL, Cardoso KM, Loni LP, Ahrens TM, Espinosa BR, Fernandes AJ, Almeida ERD, Lozovoy MAB, Reiche EMV, Maes M, Simão ANC

pubmed logopapersJun 16 2025
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19) and induces activation of inflammatory pathways, including the inflammasome. The aim was to construct Machine Learning (ML) models to predict critical disease and death in patients with COVID-19. A total of 528 individuals with SARS-CoV-2 infection were included, comprising 308 with critical and 220 with non-critical COVID-19. The ML models included imaging, demographic, inflammatory biomarkers, NLRP3 (rs10754558 and rs10157379) and IL18 (rs360717 and rs187238) inflammasome variants. Individuals with critical COVID-19 were older, higher male/female ratio, body mass index (BMI), rate of type 2 diabetes mellitus (T2DM), hypertension, inflammatory biomarkers, need of orotracheal intubation, intensive care unit admission, incidence of death, and sickness symptom complex (SSC) scores and lower peripheral oxygen saturation (SpO<sub>2</sub>) compared to those with non-critical disease. We found that 49.5 % of the variance in the severity of critical COVID-19 was explained by SpO<sub>2</sub> and SSC (negatively associated), chest computed tomography alterations (CCTA), inflammatory biomarkers, severe acute respiratory syndrome (SARS), BMI, T2DM, and age (positively associated). In this model, the NLRP3/IL18 variants showed indirect effects on critical COVID-19 that were mediated by inflammatory biomarkers, SARS, and SSC. Neural network models yielded a prediction of critical disease and death due to COVID-19 with an area under the receiving operating characteristic curve of 0.930 and 0.927, respectively. These ML methods increase the accuracy of predicting severity, critical illness, and mortality caused by COVID-19 and show that the genetic variants contribute to the predictive power of the ML models.

TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network.

Zhang R, Jie B, He Y, Wang J

pubmed logopapersJun 16 2025
Computer-aided surgical simulation is a critical component of orthognathic surgical planning, where accurately simulating face-bone shape transformations is significant. The traditional biomechanical simulation methods are limited by their computational time consumption levels, labor-intensive data processing strategies and low accuracy. Recently, deep learning-based simulation methods have been proposed to view this problem as a point-to-point transformation between skeletal and facial point clouds. However, these approaches cannot process large-scale points, have limited receptive fields that lead to noisy points, and employ complex preprocessing and postprocessing operations based on registration. These shortcomings limit the performance and widespread applicability of such methods. Therefore, we propose a Transformer-based coarse-to-fine point movement network (TCFNet) to learn unique, complicated correspondences at the patch and point levels for dense face-bone point cloud transformations. This end-to-end framework adopts a Transformer-based network and a local information aggregation network (LIA-Net) in the first and second stages, respectively, which reinforce each other to generate precise point movement paths. LIA-Net can effectively compensate for the neighborhood precision loss of the Transformer-based network by modeling local geometric structures (edges, orientations and relative position features). The previous global features are employed to guide the local displacement using a gated recurrent unit. Inspired by deformable medical image registration, we propose an auxiliary loss that can utilize expert knowledge for reconstructing critical organs. Our framework is an unsupervised algorithm, and this loss is optional. Compared with the existing state-of-the-art (SOTA) methods on gathered datasets, TCFNet achieves outstanding evaluation metrics and visualization results. The code is available at https://github.com/Runshi-Zhang/TCFNet.

Three-dimensional multimodal imaging for predicting early recurrence of hepatocellular carcinoma after surgical resection.

Peng J, Wang J, Zhu H, Jiang P, Xia J, Cui H, Hong C, Zeng L, Li R, Li Y, Liang S, Deng Q, Deng H, Xu H, Dong H, Xiao L, Liu L

pubmed logopapersJun 16 2025
High tumor recurrence after surgery remains a significant challenge in managing hepatocellular carcinoma (HCC). We aimed to construct a multimodal model to forecast the early recurrence of HCC after surgical resection and explore the associated biological mechanisms. Overall, 519 patients with HCC were included from three medical centers. 433 patients from Nanfang Hospital were used as the training cohort, and 86 patients from the other two hospitals comprised validation cohort. Radiomics and deep learning (DL) models were developed using contrast-enhanced computed tomography images. Radiomics feature visualization and gradient-weighted class activation mapping were applied to improve interpretability. A multimodal model (MM-RDLM) was constructed by integrating radiomics and DL models. Associations between MM-RDLM and recurrence-free survival (RFS) and overall survival were analyzed. Gene set enrichment analysis (GSEA) and multiplex immunohistochemistry (mIHC) were used to investigate the biological mechanisms. Models based on hepatic arterial phase images exhibited the best predictive performance, with radiomics and DL models achieving areas under the curve (AUCs) of 0.770 (95 % confidence interval [CI]: 0.725-0.815) and 0.846 (95 % CI: 0.807-0.886), respectively, in the training cohort. MM-RDLM achieved an AUC of 0.955 (95 % CI: 0.937-0.972) in the training cohort and 0.930 (95 % CI: 0.876-0.984) in the validation cohort. MM-RDLM (high vs. low) was notably linked to RFS in the training (hazard ratio [HR] = 7.80 [5.74 - 10.61], P < 0.001) and validation (HR = 10.46 [4.96 - 22.68], P < 0.001) cohorts. GSEA revealed enrichment of the natural killer cell-mediated cytotoxicity pathway in the MM-RDLM low cohort. mIHC showed significantly higher percentages of CD3-, CD56-, and CD8-positive cells in the MM-RDLM low group. The MM-RDLM model demonstrated strong predictive performance for early postoperative recurrence of HCC. These findings contribute to identifying patients at high risk for early recurrence and provide insights into the potential underlying biological mechanisms.
Page 94 of 2262251 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.