Sort by:
Page 93 of 2262251 results

Imaging-Based AI for Predicting Lymphovascular Space Invasion in Cervical Cancer: Systematic Review and Meta-Analysis.

She L, Li Y, Wang H, Zhang J, Zhao Y, Cui J, Qiu L

pubmed logopapersJun 16 2025
The role of artificial intelligence (AI) in enhancing the accuracy of lymphovascular space invasion (LVSI) detection in cervical cancer remains debated. This meta-analysis aimed to evaluate the diagnostic accuracy of imaging-based AI for predicting LVSI in cervical cancer. We conducted a comprehensive literature search across multiple databases, including PubMed, Embase, and Web of Science, identifying studies published up to November 9, 2024. Studies were included if they evaluated the diagnostic performance of imaging-based AI models in detecting LVSI in cervical cancer. We used a bivariate random-effects model to calculate pooled sensitivity and specificity with corresponding 95% confidence intervals. Study heterogeneity was assessed using the I2 statistic. Of 403 studies identified, 16 studies (2514 patients) were included. For the interval validation set, the pooled sensitivity, specificity, and area under the curve (AUC) for detecting LVSI were 0.84 (95% CI 0.79-0.87), 0.78 (95% CI 0.75-0.81), and 0.87 (95% CI 0.84-0.90). For the external validation set, the pooled sensitivity, specificity, and AUC for detecting LVSI were 0.79 (95% CI 0.70-0.86), 0.76 (95% CI 0.67-0.83), and 0.84 (95% CI 0.81-0.87). Using the likelihood ratio test for subgroup analysis, deep learning demonstrated significantly higher sensitivity compared to machine learning (P=.01). Moreover, AI models based on positron emission tomography/computed tomography exhibited superior sensitivity relative to those based on magnetic resonance imaging (P=.01). Imaging-based AI, particularly deep learning algorithms, demonstrates promising diagnostic performance in predicting LVSI in cervical cancer. However, the limited external validation datasets and the retrospective nature of the research may introduce potential biases. These findings underscore AI's potential as an auxiliary diagnostic tool, necessitating further large-scale prospective validation.

Real-time cardiac cine MRI: A comparison of a diffusion probabilistic model with alternative state-of-the-art image reconstruction techniques for undersampled spiral acquisitions.

Schad O, Heidenreich JF, Petri N, Kleineisel J, Sauer S, Bley TA, Nordbeck P, Petritsch B, Wech T

pubmed logopapersJun 16 2025
Electrocardiogram (ECG)-gated cine imaging in breath-hold enables high-quality diagnostics in most patients but can be compromised by arrhythmia and inability to hold breath. Real-time cardiac MRI offers faster and robust exams without these limitations. To achieve sufficient acceleration, advanced reconstruction methods, which transfer data into high-quality images, are required. In this study, undersampled spiral balanced SSFP (bSSFP) real-time data in free-breathing were acquired at 1.5T in 16 healthy volunteers and five arrhythmic patients, with ECG-gated Cartesian cine in breath-hold serving as clinical reference. Image reconstructions were performed using a tailored and specifically trained score-based diffusion model, compared to a variational network and different compressed sensing approaches. The techniques were assessed using an expert reader study, scalar metric calculations, difference images against a segmented reference, and Bland-Altman analysis of cardiac functional parameters. In participants with irregular RR-cycles, spiral real-time acquisitions showed superior image quality compared to the clinical reference. Quantitative and qualitative metrics indicate enhanced image quality of the diffusion model in comparison to the alternative reconstruction methods, although improvements over the variational network were minor. Slightly higher ejection fractions for the real-time diffusion reconstructions were exhibited relative to the clinical references with a bias of 1.1 ± 5.7% for healthy subjects. The proposed real-time technique enables free-breathing acquisitions of spatio-temporal images with high quality, covering the entire heart in less than 1 min. Evaluation of ejection fraction using the ECG-gated reference can be vulnerable to arrhythmia and averaging effects, highlighting the need for real-time approaches. Prolonged inference times and stochastic variability of the diffusion reconstruction represent obstacles to overcome for clinical translation.

A Semi-supervised Ultrasound Image Segmentation Network Integrating Enhanced Mask Learning and Dynamic Temperature-controlled Self-distillation.

Xu L, Huang Y, Zhou H, Mao Q, Yin W

pubmed logopapersJun 16 2025
Ultrasound imaging is widely used in clinical practice due to its advantages of no radiation and real-time capability. However, its image quality is often degraded by speckle noise, low contrast, and blurred boundaries, which pose significant challenges for automatic segmentation. In recent years, deep learning methods have achieved notable progress in ultrasound image segmentation. Nonetheless, these methods typically require large-scale annotated datasets, incur high computational costs, and suffer from slow inference speeds, limiting their clinical applicability. To overcome these limitations, we propose EML-DMSD, a novel semi-supervised segmentation network that combines Enhanced Mask Learning (EML) and Dynamic Temperature-Controlled Multi-Scale Self-Distillation (DMSD). The EML module improves the model's robustness to noise and boundary ambiguity, while the DMSD module introduces a teacher-free, multi-scale self-distillation strategy with dynamic temperature adjustment to boost inference efficiency and reduce reliance on extensive resources. Experiments on multiple ultrasound benchmark datasets demonstrate that EML-DMSD achieves superior segmentation accuracy with efficient inference, highlighting its strong generalization ability and clinical potential.

Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma.

Wang W, Ning Z, Zhang J, Zhang Y, Wang W

pubmed logopapersJun 16 2025
The non-invasive assessment of central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) plays a crucial role in assisting treatment decision and prognosis planning. This study aims to use an interpretable deep fuzzy network guided by expert knowledge to predict the CLNM status of patients with PTC from ultrasound images. A total of 1019 PTC patients were enrolled in this study, comprising 465 CLNM patients and 554 non-CLNM patients. Pathological diagnosis served as the gold standard to determine metastasis status. Clinical and morphological features of thyroid were collected as expert knowledge to guide the deep fuzzy network in predicting CLNM status. The network consisted of a region of interest (ROI) segmentation module, a knowledge-aware feature extraction module, and a fuzzy prediction module. The network was trained on 652 patients, validated on 163 patients and tested on 204 patients. The model exhibited promising performance in predicting CLNM status, achieving the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity and specificity of 0.786 (95% CI 0.720-0.846), 0.745 (95% CI 0.681-0.799), 0.727 (95% CI 0.636-0.819), 0.696 (95% CI 0.594-0.789), and 0.786 (95% CI 0.712-0.864), respectively. In addition, the rules of the fuzzy system in the model are easy to understand and explain, and have good interpretability. The deep fuzzy network guided by expert knowledge predicted CLNM status of PTC patients with high accuracy and good interpretability, and may be considered as an effective tool to guide preoperative clinical decision-making.

Predicting mucosal healing in Crohn's disease: development of a deep-learning model based on intestinal ultrasound images.

Ma L, Chen Y, Fu X, Qin J, Luo Y, Gao Y, Li W, Xiao M, Cao Z, Shi J, Zhu Q, Guo C, Wu J

pubmed logopapersJun 16 2025
Predicting treatment response in Crohn's disease (CD) is essential for making an optimal therapeutic regimen, but relevant models are lacking. This study aimed to develop a deep learning model based on baseline intestinal ultrasound (IUS) images and clinical information to predict mucosal healing. Consecutive CD patients who underwent pretreatment IUS were retrospectively recruited at a tertiary hospital. A total of 1548 IUS images of longitudinal diseased bowel segments were collected and divided into a training cohort and a test cohort. A convolutional neural network model was developed to predict mucosal healing after one year of standardized treatment. The model's efficacy was validated using the five-fold internal cross-validation and further tested in the test cohort. A total of 190 patients (68.9% men, mean age 32.3 ± 14.1 years) were enrolled, consisting of 1038 IUS images of mucosal healing and 510 images of no mucosal healing. The mean area under the curve in the test cohort was 0.73 (95% CI: 0.68-0.78), with the mean sensitivity of 68.1% (95% CI: 60.5-77.4%), specificity of 69.5% (95% CI: 60.1-77.2%), positive prediction value of 80.0% (95% CI: 74.5-84.9%), negative prediction value of 54.8% (95% CI: 48.0-63.7%). Heat maps showing the deep-learning decision-making process revealed that information from the bowel wall, serous surface, and surrounding mesentery was mainly considered by the model. We developed a deep learning model based on IUS images to predict mucosal healing in CD with notable accuracy. Further validation and improvement of this model with more multi-center, real-world data are needed. Predicting treatment response in CD is essential to making an optimal therapeutic regimen. In this study, a deep-learning model using pretreatment ultrasound images and clinical information was generated to predict mucosal healing with an AUC of 0.73. Response to medication treatment is highly variable among patients with CD. High-resolution IUS images of the intestinal wall may hide significant characteristics for treatment response. A deep-learning model capable of predicting treatment response was generated using pretreatment IUS images.

Think deep in the tractography game: deep learning for tractography computing and analysis.

Zhang F, Théberge A, Jodoin PM, Descoteaux M, O'Donnell LJ

pubmed logopapersJun 16 2025
Tractography is a challenging process with complex rules, driving continuous algorithmic evolution to address its challenges. Meanwhile, deep learning has tackled similarly difficult tasks, such as mastering the Go board game and animating sophisticated robots. Given its transformative impact in these areas, deep learning has the potential to revolutionize tractography within the framework of existing rules. This work provides a brief summary of recent advances and challenges in deep learning-based tractography computing and analysis.

Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond.

Pisuchpen N, Srinivas Rao S, Noda Y, Kongboonvijit S, Rezaei A, Kambadakone A

pubmed logopapersJun 16 2025
Computed tomography (CT) is a cornerstone of abdominal imaging, playing a vital role in accurate diagnosis, appropriate treatment planning, and disease monitoring. The evolution of artificial intelligence (AI) in imaging has introduced deep learning-based reconstruction (DLR) techniques that enhance image quality, reduce radiation dose, and improve workflow efficiency. Traditional image reconstruction methods, including filtered back projection (FBP) and iterative reconstruction (IR), have limitations such as high noise levels and artificial image texture. DLR overcomes these challenges by leveraging convolutional neural networks to generate high-fidelity images while preserving anatomical details. Recent advances in vendor-specific and vendor-agnostic DLR algorithms, such as TrueFidelity, AiCE, and Precise Image, have demonstrated significant improvements in contrast-to-noise ratio, lesion detection, and diagnostic confidence across various abdominal organs, including the liver, pancreas, and kidneys. Furthermore, AI extends beyond image reconstruction to applications such as low contrast lesion detection, quantitative imaging, and workflow optimization, augmenting radiologists' efficiency and diagnostic accuracy. However, challenges remain in clinical validation, standardization, and widespread adoption. This review explores the principles, advancements, and future directions of AI-driven CT image reconstruction and its expanding role in abdominal imaging.

Rate of brain aging associates with future executive function in Asian children and older adults.

Cheng SF, Yue WL, Ng KK, Qian X, Liu S, Tan TWK, Nguyen KN, Leong RLF, Hilal S, Cheng CY, Tan AP, Law EC, Gluckman PD, Chen CL, Chong YS, Meaney MJ, Chee MWL, Yeo BTT, Zhou JH

pubmed logopapersJun 16 2025
Brain age has emerged as a powerful tool to understand neuroanatomical aging and its link to health outcomes like cognition. However, there remains a lack of studies investigating the rate of brain aging and its relationship to cognition. Furthermore, most brain age models are trained and tested on cross-sectional data from primarily Caucasian, adult participants. It is thus unclear how well these models generalize to non-Caucasian participants, especially children. Here, we tested a previously published deep learning model on Singaporean elderly participants (55-88 years old) and children (4-11 years old). We found that the model directly generalized to the elderly participants, but model finetuning was necessary for children. After finetuning, we found that the rate of change in brain age gap was associated with future executive function performance in both elderly participants and children. We further found that lateral ventricles and frontal areas contributed to brain age prediction in elderly participants, while white matter and posterior brain regions were more important in predicting brain age of children. Taken together, our results suggest that there is potential for generalizing brain age models to diverse populations. Moreover, the longitudinal change in brain age gap reflects developing and aging processes in the brain, relating to future cognitive function.

Feasibility of Ultralow-Dose CT With Deep-Learning Reconstruction for Aneurysm Diameter Measurement in Post-EVAR Follow-Up: A Prospective Comparative Study With Conventional CT.

Matsushiro K, Okada T, Sasaki K, Gentsu T, Ueshima E, Sofue K, Yamanaka K, Hori M, Yamaguchi M, Sugimoto K, Okada K, Murakami T

pubmed logopapersJun 16 2025
We conducted a prospective study to evaluate the usefulness of ultralow-dose computed tomography (ULD-CT) with deep-learning reconstruction (DLR) compared with conventional standard-dose CT (SD-CT) for post-endovascular aneurysm repair (EVAR) surveillance. We prospectively performed post-EVAR surveillance using ULD-CT at a single center in 44 patients after they had received SD-CT. The ULD-CT images underwent DLR, whereas the SD-CT images underwent iterative reconstruction. Three radiologists blinded to the patient information and CT conditions independently measured the aneurysmal sac diameter and evaluated the overall image quality. Bland-Altman analysis and a linear mixed-effects model were used to assess and compare the measurement accuracy between SD-CT and ULD-CT. The mean CT dose index volume and dose-length product were significantly lower for ULD-CT (1.0 ± 0.3 mGy and 71.4 ± 26.5 mGy•cm) than that for SD-CT (6.9 ± 0.9 mGy and 500.9 ± 96.0 mGy•cm; p<0.001). The mean short diameters of the aneurysmal sac measured by the 3 observers were 46.7 ± 10.8 mm on SD-CT and 46.3 ± 10.8 mm on ULD-CT. The mean difference in the short diameter of the aneurysmal sac between ULD-CT and SD-CT was -0.37 mm (95% confidence interval, -0.6 to -0.12 mm). The intraobserver limits of agreement (LOA) for measurements by ULD-CT and SD-CT were -3.5 to 2.6, -2.8 to 1.9, and -2.9 to 2.3 for Observers 1, 2, and 3, respectively. The pairwise LOAs for assessing interobserver agreement, such as for the differences between Observers 1 and 2 measurements in SD-CT, were mostly within the predetermined acceptable range. The mean image-quality score was lower for ULD-CT (3.3 ± 0.6) than that for SD-CT (4.5 ± 0.5; p<0.001). Aneurysmal sac diameter measurements by ULD-CT with DLR were sufficiently accurate for post-EVAR surveillance, with substantial radiation reduction versus SD-CT.Clinical ImpactDeep-learning reconstruction (DLR) is implemented as a software-based algorithm rather than requiring dedicated hardware. As such, it is expected to be integrated into standard computed tomography (CT) systems in the near future. The ultralow-dose CT (ULD-CT) with DLR evaluated in this study has the potential to become widely accessible across various institutions. This advancement could substantially reduce radiation exposure in post-endovascular aneurysm repair (EVAR) CT imaging, thereby facilitating its adoption as a standard modality for post-EVAR surveillance.

Association Between Automated Coronary Artery Calcium From Routine Chest Computed Tomography Scans and Cardiovascular Risk in Patients With Colorectal or Gastric Cancer.

Kim S, Kim S, Cha MJ, Kim HS, Kim HS, Hyung WJ, Cho I, You SC

pubmed logopapersJun 16 2025
As cardiovascular disease (CVD) is the leading cause of noncancer mortality in colorectal or gastric cancer patients, it is essential to identify patients at increased CVD risk. Coronary artery calcium (CAC) is an established predictor of atherosclerotic CVD; however, its application is limited in this population. This study evaluates the association between automated CAC scoring using chest computed tomography and atherosclerotic CVD risk in colorectal or gastric cancer patients. A retrospective cohort study was conducted using electronic health records linked to claims data of colorectal or gastric cancer patients who underwent non-ECG-gated chest computed tomography at 2 tertiary hospitals in South Korea between 2011 and 2019. CAC was automatically quantified using deep learning software and used to classify patients into 4 groups (CAC=0, 0<CAC≤100, 100<CAC≤400, CAC>400). The primary outcome was major adverse cardiovascular events (myocardial infarction, stroke, or cardiovascular mortality), and assessed using the multivariable Fine and Gray subdistribution hazard model. A meta-analysis was performed to calculate pooled subdistribution hazard ratios. A total of 3153 patients were included in this study (36.5% female; 36.3% CAC=0; 38.1% 0<CAC≤100; 14.1% 100<CAC≤400; 11.5% CAC>400). The mean follow-up period was 4.1 years. The incidence rate of MACE was 5.28, 8.03, 9.99, and 29.14 per 1000 person-years in CAC=0, 0<CAC≤100, 100<CAC≤400, and CAC>400. Compared with CAC=0, the risk of MACE was not significantly different in patients with 0<CAC≤100 (subdistribution hazard ratio, 1.43 [95% CI, 0.41-5.01]), and 100<CAC≤400 (subdistribution hazard ratio, 0.99 [95% CI, 0.48-2.04]). Patients with CAC>400 had 2.33 (95% CI, 1.24-4.39) times higher risk of MACE compared with those with CAC=0. CAC>400 was associated with an increased risk of MACE compared with CAC=0 among colorectal or gastric cancer patients. CAC quantified on routine chest computed tomography scans provides prognostic information for atherosclerotic CVD risk in this population.
Page 93 of 2262251 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.