Sort by:
Page 3 of 1751742 results

Mechanically assisted non-invasive ventilation for liver SABR: Improve CBCT, treat more accurately.

Pierrard J, Audag N, Massih CA, Garcia MA, Moreno EA, Colot A, Jardinet S, Mony R, Nevez Marques AF, Servaes L, Tison T, den Bossche VV, Etume AW, Zouheir L, Ooteghem GV

pubmed logopapersJul 1 2025
Cone-beam computed tomography (CBCT) for image-guided radiotherapy (IGRT) during liver stereotactic ablative radiotherapy (SABR) is degraded by respiratory motion artefacts, potentially jeopardising treatment accuracy. Mechanically assisted non-invasive ventilation-induced breath-hold (MANIV-BH) can reduce these artefacts. This study compares MANIV-BH and free-breathing CBCTs regarding image quality, IGRT variability, automatic registration accuracy, and deep-learning auto-segmentation performance. Liver SABR CBCTs were presented blindly to 14 operators: 25 patients with FB and 25 with MANIV-BH. They rated CBCT quality and IGRT ease (rigid registration with planning CT). Interoperator IGRT variability was compared between FB and MANIV-BH. Automatic gross tumour volume (GTV) mapping accuracy was compared using automatic rigid registration and image-guided deformable registration. Deep-learning organ-at-risk (OAR) auto-segmentation was rated by an operator, who recorded the time dedicated for manual correction of these volumes. MANIV-BH significantly improved CBCT image quality ("Excellent"/"Good": 83.4 % versus 25.4 % with FB, p < 0.001), facilitated IGRT ("Very easy"/"Easy": 68.0 % versus 38.9 % with FB, p < 0.001), and reduced IGRT variability, particularly for trained operators (overall variability of 3.2 mm versus 4.6 mm with FB, p = 0.010). MANIV-BH improved deep-learning auto-segmentation performance (80.0 % rated "Excellent"/"Good" versus 4.0 % with FB, p < 0.001), and reduced median manual correction time by 54.2 % compared to FB (p < 0.001). However, automatic GTV mapping accuracy was not significantly different between MANIV-BH and FB. In liver SABR, MANIV-BH significantly improves CBCT quality, reduces interoperator IGRT variability, and enhances OAR auto-segmentation. Beyond being safe and effective for respiratory motion mitigation, MANIV increases accuracy during treatment delivery, although its implementation requires resources.

Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study.

Ziegelmayer S, Häntze H, Mertens C, Busch F, Lemke T, Kather JN, Truhn D, Kim SH, Wiestler B, Graf M, Kader A, Bamberg F, Schlett CL, Weiss JB, Schulz-Menger J, Ringhof S, Can E, Pischon T, Niendorf T, Lammert J, Schulze M, Keil T, Peters A, Hadamitzky M, Makowski MR, Adams L, Bressem K

pubmed logopapersJul 1 2025
Chronic back pain (CBP) affects over 80 million people in Europe, contributing to substantial healthcare costs and disability. Understanding modifiable risk factors, such as muscle composition, may aid in prevention and treatment. This study investigates the association between lean muscle mass (LMM) and intermuscular adipose tissue (InterMAT) with CBP using noninvasive whole-body magnetic resonance imaging (MRI). This cross-sectional analysis used whole-body MRI data from 30,868 participants in the German National Cohort (NAKO), collected between 1 May 2014 and 1 September 2019. CBP was defined as back pain persisting >3 months. LMM and InterMAT were quantified via MRI-based muscle segmentations using a validated deep learning model. Associations were analyzed using mixed logistic regression, adjusting for age, sex, diabetes, dyslipidemia, osteoporosis, osteoarthritis, physical activity, and study site. Among 27,518 participants (n = 12,193/44.3% female, n = 14,605/55.7% male; median age 49 years IQR 41; 57), 21.8% (n = 6003; n = 2999/50.0% female, n = 3004/50% male; median age 53 years IQR 46; 60) reported CBP, compared to 78.2% (n = 21,515; n = 9194/42.7% female, n = 12,321/57.3% male; median age 48 years IQR 39; 56) who did not. CBP prevalence was highest in those with low (<500 MET min/week) or high (>5000 MET min/week) self-reported physical activity levels (24.6% (n = 10,892) and 22.0% (n = 3800), respectively) compared to moderate (500-5000 MET min/week) levels (19.4% (n = 12,826); p < 0.0001). Adjusted analyses revealed that a higher InterMAT (OR 1.22 per 2-unit Z-score; 95% CI 1.13-1.30; p < 0.0001) was associated with an increased likelihood of chronic back pain (CBP), whereas higher lean muscle mass (LMM) (OR 0.87 per 2-unit Z-score; 95% CI 0.79-0.95; p = 0.003) was associated with a reduced likelihood of CBP. Stratified analyses confirmed these associations persisted in individuals with osteoarthritis (OA-CBP LMM: 22.9 cm<sup>3</sup>/kg/m; InterMAT: 7.53% vs OA-No CBP LMM: 24.3 cm<sup>3</sup>/kg/m; InterMAT: 6.96% both p < 0.0001) and osteoporosis (OP-CBP LMM: 20.9 cm<sup>3</sup>/kg/m; InterMAT: 8.43% vs OP-No CBP LMM: 21.3 cm<sup>3</sup>/kg/m; InterMAT: 7.9% p = 0.16 and p = 0.0019). Higher pain intensity (Pain Intensity Numerical Rating Scale ≥4) correlated with lower LMM (2-unit Z-score deviation = OR, 0.63; 95% CI, 0.57-0.70; p < 0.0001) and higher InterMAT (2-unit Z-score deviation = OR, 1.22; 95% CI, 1.13-1.30; p < 0.0001), independent of physical activity, osteoporosis and osteoarthritis. This large, population-based study highlights the associations of InterMAT and LMM with CBP. Given the limitations of the cross-sectional design, our findings can be seen as an impetus for further causal investigations within a broader, multidisciplinary framework to guide future research toward improved prevention and treatment. The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, 01ER1801A/B/C/D and 01ER2301A/B/C], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association.

A Deep Learning Model Based on High-Frequency Ultrasound Images for Classification of Different Stages of Liver Fibrosis.

Zhang L, Tan Z, Li C, Mou L, Shi YL, Zhu XX, Luo Y

pubmed logopapersJul 1 2025
To develop a deep learning model based on high-frequency ultrasound images to classify different stages of liver fibrosis in chronic hepatitis B patients. This retrospective multicentre study included chronic hepatitis B patients who underwent both high-frequency and low-frequency liver ultrasound examinations between January 2014 and August 2024 at six hospitals. Paired images were employed to train the HF-DL and the LF-DL models independently. Three binary tasks were conducted: (1) Significant Fibrosis (S0-1 vs. S2-4); (2) Advanced Fibrosis (S0-2 vs. S3-4); (3) Cirrhosis (S0-3 vs. S4). Hepatic pathological results constituted the ground truth for algorithm development and evaluation. The diagnostic value of high-frequency and low-frequency liver ultrasound images was compared across commonly used CNN networks. The HF-DL model performance was compared against the LF-DL model, FIB-4, APRI, and with SWE (external test set). The calibration of models was plotted. The clinical benefits were calculated. Subgroup analysis for patients with different characteristics (BMI, ALT, inflammation level, alcohol consumption level) was conducted. The HF-DL model demonstrated consistently superior diagnostic performance across all stages of liver fibrosis compared to the LF-DL model, FIB-4, APRI and SWE, particularly in classifying advanced fibrosis (0.93 [95% CI 0.90-0.95], 0.93 [95% CI 0.89-0.96], p < 0.01). The HF-DL model demonstrates significantly improved performance in both target patient detection and negative population exclusion. The HF-DL model based on high-frequency ultrasound images outperforms other routinely used non-invasive modalities across different stages of liver fibrosis, particularly in advanced fibrosis, and may offer considerable clinical value.

Agreement between Routine-Dose and Lower-Dose CT with and without Deep Learning-based Denoising for Active Surveillance of Solid Small Renal Masses: A Multiobserver Study.

Borgbjerg J, Breen BS, Kristiansen CH, Larsen NE, Medrud L, Mikalone R, Müller S, Naujokaite G, Negård A, Nielsen TK, Salte IM, Frøkjær JB

pubmed logopapersJul 1 2025
Purpose To assess the agreement between routine-dose (RD) and lower-dose (LD) contrast-enhanced CT scans, with and without Digital Imaging and Communications in Medicine-based deep learning-based denoising (DLD), in evaluating small renal masses (SRMs) during active surveillance. Materials and Methods In this retrospective study, CT scans from patients undergoing active surveillance for an SRM were included. Using a validated simulation technique, LD CT images were generated from the RD images to simulate 75% (LD75) and 90% (LD90) radiation dose reductions. Two additional LD image sets, in which the DLD was applied (LD75-DLD and LD90-DLD), were generated. Between January 2023 and June 2024, nine radiologists from three institutions independently evaluated 350 CT scans across five datasets for tumor size, tumor nearness to the collecting system (TN), and tumor shape irregularity (TSI), and interobserver reproducibility and agreement were assessed using the 95% limits of agreement with the mean (LOAM) and Gwet AC2 coefficient, respectively. Subjective and quantitative image quality assessments were also performed. Results The study sample included 70 patients (mean age, 73.2 years ± 9.2 [SD]; 48 male, 22 female). LD75 CT was found to be in agreement with RD scans for assessing SRM diameter, with a LOAM of ±2.4 mm (95% CI: 2.3, 2.6) for LD75 compared with ±2.2 mm (95% CI: 2.1, 2.4) for RD. However, a 90% dose reduction compromised reproducibility (LOAM ±3.0 mm; 95% CI: 2.8, 3.2). LD90-DLD preserved measurement reproducibility (LOAM ±2.4 mm; 95% CI: 2.3, 2.6). Observer agreement was comparable between TN and TSI assessments across all image sets, with no statistically significant differences identified (all comparisons <i>P</i> ≥ .35 for TN and <i>P</i> ≥ .02 for TSI; Holm-corrected significance threshold, <i>P</i> = .013). Subjective and quantitative image quality assessments confirmed that DLD effectively restored image quality at reduced dose levels: LD75-DLD had the highest overall image quality, significantly lower noise, and improved contrast-to-noise ratio compared with RD (<i>P</i> < .001). Conclusion A 75% reduction in radiation dose is feasible for SRM assessment in active surveillance using CT with a conventional iterative reconstruction technique, whereas applying DLD allows submillisievert dose reduction. <b>Keywords:</b> CT, Urinary, Kidney, Radiation Safety, Observer Performance, Technology Assessment <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Muglia in this issue.

A quantitative tumor-wide analysis of morphological heterogeneity of colorectal adenocarcinoma.

Dragomir MP, Popovici V, Schallenberg S, Čarnogurská M, Horst D, Nenutil R, Bosman F, Budinská E

pubmed logopapersJul 1 2025
The intertumoral and intratumoral heterogeneity of colorectal adenocarcinoma (CRC) at the morphologic level is poorly understood. Previously, we identified morphological patterns associated with CRC molecular subtypes and their distinct molecular motifs. Here we aimed to evaluate the heterogeneity of these patterns across CRC. Three pathologists evaluated dominant, secondary, and tertiary morphology on four sections from four different FFPE blocks per tumor in a pilot set of 22 CRCs. An AI-based image analysis tool was trained on these tumors to evaluate the morphologic heterogeneity on an extended set of 161 stage I-IV primary CRCs (n = 644 H&E sections). We found that most tumors had two or three different dominant morphotypes and the complex tubular (CT) morphotype was the most common. The CT morphotype showed no combinatorial preferences. Desmoplastic (DE) morphotype was rarely dominant and rarely combined with other dominant morphotypes. Mucinous (MU) morphotype was mostly combined with solid/trabecular (TB) and papillary (PP) morphotypes. Most tumors showed medium or high heterogeneity, but no associations were found between heterogeneity and clinical parameters. A higher proportion of DE morphotype was associated with higher T-stage, N-stage, distant metastases, AJCC stage, and shorter overall survival (OS) and relapse-free survival (RFS). A higher proportion of MU morphotype was associated with higher grade, right side, and microsatellite instability (MSI). PP morphotype was associated with earlier T- and N-stage, absence of metastases, and improved OS and RFS. CT was linked to left side, lower grade, and better survival in stage I-III patients. MSI tumors showed higher proportions of MU and TB, and lower CT and PP morphotypes. These findings suggest that morphological shifts accompany tumor progression and highlight the need for extensive sampling and AI-based analysis. In conclusion, we observed unexpectedly high intratumoral morphological heterogeneity of CRC and found that it is not heterogeneity per se, but the proportions of morphologies that are associated with clinical outcomes.

Acquisition and Reconstruction Techniques for Coronary CT Angiography: Current Status and Trends over the Past Decade.

Fukui R, Harashima S, Samejima W, Shimizu Y, Washizuka F, Kariyasu T, Nishikawa M, Yamaguchi H, Takeuchi H, Machida H

pubmed logopapersJul 1 2025
Coronary CT angiography (CCTA) has been widely used as a noninvasive modality for accurate assessment of coronary artery disease (CAD) in clinical settings. However, the following limitations of CCTA remain issues of interest: motion, stair-step, and blooming artifacts; suboptimal image noise; ionizing radiation exposure; administration of contrast medium; and complex imaging workflow. Various acquisition and reconstruction techniques have been introduced over the past decade to overcome these limitations. Low-tube-voltage acquisition using a high-output x-ray tube can reasonably reduce the contrast medium and radiation dose. Fast x-ray tube and gantry rotation, dual-source CT, and a motion-correction algorithm (MCA) can improve temporal resolution and reduce coronary motion artifacts. High-definition CT (HDCT), ultrahigh-resolution CT (UHRCT), and superresolution deep learning reconstruction (DLR) algorithms can improve the spatial resolution and delineation of the vessel lumen with coronary calcifications or stents by reducing blooming artifacts. Whole-heart coverage using area-detector CT can eliminate stair-step artifacts. The DLR algorithm can effectively reduce image noise and radiation dose while maintaining image quality, particularly during high-resolution acquisition using HDCT or UHRCT, during low-tube-voltage acquisition, or when imaging patients with a large body habitus. Automatic cardiac protocol selection, automatic optimal cardiac phase selection, and MCA can improve the imaging workflow for each CCTA examination. A sufficient understanding of current and novel acquisition and reconstruction techniques is important to enhance the clinical value of CCTA for noninvasive assessment of CAD. <sup>©</sup>RSNA, 2025 Supplemental material is available for this article.

Liver Fat Fraction and Machine Learning Improve Steatohepatitis Diagnosis in Liver Transplant Patients.

Hajek M, Sedivy P, Burian M, Mikova I, Trunecka P, Pajuelo D, Dezortova M

pubmed logopapersJul 1 2025
Machine learning identifies liver fat fraction (FF) measured by <sup>1</sup>H MR spectroscopy, insulinemia, and elastography as robust, non-invasive biomarkers for diagnosing steatohepatitis in liver transplant patients, validated through decision tree analysis. Compared to the general population (~5.8% prevalence), MASH is significantly more common in liver transplant recipients (~30%-50%). In patients with FF > 5.3%, the positive predictive value for MASH ranged up to 97%, more than twice the value observed in the general population.

Physiological Confounds in BOLD-fMRI and Their Correction.

Addeh A, Williams RJ, Golestani A, Pike GB, MacDonald ME

pubmed logopapersJul 1 2025
Functional magnetic resonance imaging (fMRI) has opened new frontiers in neuroscience by instrumentally driving our understanding of brain function and development. Despite its substantial successes, fMRI studies persistently encounter obstacles stemming from inherent, unavoidable physiological confounds. The adverse effects of these confounds are especially noticeable with higher magnetic fields, which have been gaining momentum in fMRI experiments. This review focuses on the four major physiological confounds impacting fMRI studies: low-frequency fluctuations in both breathing depth and rate, low-frequency fluctuations in the heart rate, thoracic movements, and cardiac pulsatility. Over the past three decades, numerous correction techniques have emerged to address these challenges. Correction methods have effectively enhanced the detection of task-activated voxels and minimized the occurrence of false positives and false negatives in functional connectivity studies. While confound correction methods have merit, they also have certain limitations. For instance, model-based approaches require externally recorded physiological data that is often unavailable in fMRI studies. Methods reliant on independent component analysis, on the other hand, need prior knowledge about the number of components. Machine learning techniques, although showing potential, are still in the early stages of development and require additional validation. This article reviews the mechanics of physiological confound correction methods, scrutinizes their performance and limitations, and discusses their impact on fMRI studies.

Volumetric and Diffusion Tensor Imaging Abnormalities Are Associated With Behavioral Changes Post-Concussion in a Youth Pig Model of Mild Traumatic Brain Injury.

Sanjida I, Alesa N, Chenyang L, Jiangyang Z, Bianca DM, Ana V, Shaun S, Avner M, Kirk M, Aimee C, Jie H, Ricardo MA, Jane M, Galit P

pubmed logopapersJul 1 2025
Mild traumatic brain injury (mTBI) caused by sports-related incidents in children and youth often leads to prolonged cognitive impairments but remains difficult to diagnose. In order to identify clinically relevant imaging and behavioral biomarkers associated concussion, a closed-head mTBI was induced in adolescent pigs. Twelve (n = 4 male and n = 8 female), 16-week old Yucatan pigs were tested; n = 6 received mTBI and n = 6 received a sham procedure. T1-weighted imaging was used to assess volumetric alterations in different regions of the brain and diffusion tensor imaging (DTI) to examine microstructural damage in white matter. The pigs were imaged at 1- and 3-month post-injury. Neuropsychological screening for executive function and anxiety were performed before and in the months after the injury. The volumetric analysis showed significant longitudinal changes in pigs with mTBI compared with sham, which may be attributed to swelling and neuroinflammation. Fractional anisotropy (FA) values derived from DTI images demonstrated a 21% increase in corpus callosum from 1 to 3 months in mTBI pigs, which is significantly higher than in sham pigs (4.8%). Additionally, comparisons of the left and right internal capsules revealed a decrease in FA in the right internal capsule for mTBI pigs, which may indicate demyelination. The neuroimaging results suggest that the injury had disrupted the maturation of white and gray matter in the developing brain. Behavioral testing showed that compare to sham pigs, mTBI pigs exhibited 23% increased activity in open field tests, 35% incraesed escape attempts, along with a 65% decrease in interaction with the novel object, suggesting possible memory impairments and cognitive deficits. The correlation analysis showed an associations between volumetric features and behavioral metrics. Furthermore, a machine learning model, which integrated FA, volumetric features and behavioral test metrics, achieved 67% accuracy, indicating its potential to differentiate the two groups. Thus, the imaging biomarkers were indicative of long-term behavioral impairments and could be crucial to the clinical management of concussion in youth.

Deep Learning Reveals Liver MRI Features Associated With PNPLA3 I148M in Steatotic Liver Disease.

Chen Y, Laevens BPM, Lemainque T, Müller-Franzes GA, Seibel T, Dlugosch C, Clusmann J, Koop PH, Gong R, Liu Y, Jakhar N, Cao F, Schophaus S, Raju TB, Raptis AA, van Haag F, Joy J, Loomba R, Valenti L, Kather JN, Brinker TJ, Herzog M, Costa IG, Hernando D, Schneider KM, Truhn D, Schneider CV

pubmed logopapersJul 1 2025
Steatotic liver disease (SLD) is the most common liver disease worldwide, affecting 30% of the global population. It is strongly associated with the interplay of genetic and lifestyle-related risk factors. The genetic variant accounting for the largest fraction of SLD heritability is PNPLA3 I148M, which is carried by 23% of the western population and increases the risk of SLD two to three-fold. However, identification of variant carriers is not part of routine clinical care and prevents patients from receiving personalised care. We analysed MRI images and common genetic variants in PNPLA3, TM6SF2, MTARC1, HSD17B13 and GCKR from a cohort of 45 603 individuals from the UK Biobank. Proton density fat fraction (PDFF) maps were generated using a water-fat separation toolbox, applied to the magnitude and phase MRI data. The liver region was segmented using a U-Net model trained on 600 manually segmented ground truth images. The resulting liver masks and PDFF maps were subsequently used to calculate liver PDFF values. Individuals with (PDFF ≥ 5%) and without SLD (PDFF < 5%) were selected as the study cohort and used to train and test a Vision Transformer classification model with five-fold cross validation. We aimed to differentiate individuals who are homozygous for the PNPLA3 I148M variant from non-carriers, as evaluated by the area under the receiver operating characteristic curve (AUROC). To ensure a clear genetic contrast, all heterozygous individuals were excluded. To interpret our model, we generated attention maps that highlight the regions that are most predictive of the outcomes. Homozygosity for the PNPLA3 I148M variant demonstrated the best predictive performance among five variants with AUROC of 0.68 (95% CI: 0.64-0.73) in SLD patients and 0.57 (95% CI: 0.52-0.61) in non-SLD patients. The AUROCs for the other SNPs ranged from 0.54 to 0.57 in SLD patients and from 0.52 to 0.54 in non-SLD patients. The predictive performance was generally higher in SLD patients compared to non-SLD patients. Attention maps for PNPLA3 I148M carriers showed that fat deposition in regions adjacent to the hepatic vessels, near the liver hilum, plays an important role in predicting the presence of the I148M variant. Our study marks novel progress in the non-invasive detection of homozygosity for PNPLA3 I148M through the application of deep learning models on MRI images. Our findings suggest that PNPLA3 I148M might affect the liver fat distribution and could be used to predict the presence of PNPLA3 variants in patients with fatty liver. The findings of this research have the potential to be integrated into standard clinical practice, particularly when combined with clinical and biochemical data from other modalities to increase accuracy, enabling easier identification of at-risk individuals and facilitating the development of tailored interventions for PNPLA3 I148M-associated liver disease.
Page 3 of 1751742 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.