Sort by:
Page 258 of 3093083 results

Diffusion based multi-domain neuroimaging harmonization method with preservation of anatomical details.

Lan H, Varghese BA, Sheikh-Bahaei N, Sepehrband F, Toga AW, Choupan J

pubmed logopapersMay 26 2025
In multi-center neuroimaging studies, the technical variability caused by the batch differences could hinder the ability to aggregate data across sites, and negatively impact the reliability of study-level results. Recent efforts in neuroimaging harmonization have aimed to minimize these technical gaps and reduce technical variability across batches. While Generative Adversarial Networks (GAN) has been a prominent method for addressing harmonization tasks, GAN-harmonized images suffer from artifacts or anatomical distortions. Given the advancements of denoising diffusion probabilistic model which produces high-fidelity images, we have assessed the efficacy of the diffusion model for neuroimaging harmonization. While GAN-based methods intrinsically transform imaging styles between two domains per model, we have demonstrated the diffusion model's superior capability in harmonizing images across multiple domains with single model. Our experiments highlight that the learned domain invariant anatomical condition reinforces the model to accurately preserve the anatomical details while differentiating batch differences at each diffusion step. Our proposed method has been tested using T1-weighted MRI images from two public neuroimaging datasets of ADNI1 and ABIDE II, yielding harmonization results with consistent anatomy preservation and superior FID score compared to the GAN-based methods. We have conducted multiple analyses including extensive quantitative and qualitative evaluations against the baseline models, ablation study showcasing the benefits of the learned domain invariant conditions, and improvements in the consistency of perivascular spaces segmentation analysis and volumetric analysis through harmonization.

Rate and Patient Specific Risk Factors for Periprosthetic Acetabular Fractures during Primary Total Hip Arthroplasty using a Pressfit Cup.

Simon S, Gobi H, Mitterer JA, Frank BJ, Huber S, Aichmair A, Dominkus M, Hofstaetter JG

pubmed logopapersMay 26 2025
Periprosthetic acetabular fractures following primary total hip arthroplasty (THA) using a cementless acetabular component range from occult to severe fractures. The aims of this study were to evaluate the perioperative periprosthetic acetabular fracture rate and patient-specific risks of a modular cementless acetabular component. In this study, we included 7,016 primary THAs (61.4% women, 38.6% men; age, 67 years; interquartile-range, 58 to 74) that received a cementless-hydroxyapatite-coated modular-titanium press-fit acetabular component from a single manufacturer between January 2013 and September 2022. All perioperative radiographs and CT (computer tomography) scans were analyzed for all causes. Patient-specific data and the revision rate were retrieved, and radiographic measurements were performed using artificial intelligence-based software. Following matching based on patients' demographics, a comparison was made between patients who had and did not have periacetabular fractures in order to identify patient-specific and radiographic risk factors for periacetabular fractures. The fracture rate was 0.8% (56 of 7,016). Overall, 33.9% (19 of 56) were small occult fractures solely visible on CT. Additionally, there were 21 of 56 (37.5%) with a stable small fracture. Both groups (40 of 56 (71.4%)) were treated nonoperatively. Revision THA was necessary in 16 of 56, resulting in an overall revision rate of 0.2% (16 of 7,016). Patient-specific risk factors were small acetabular-component size (≤ 50), a low body mass index (BMI) (< 24.5), a higher age (> 68 years), women, a low lateral-central-age-angle (< 24°), a high Extrusion-index (> 20%), a high sharp-angle (> 38°), and a high Tönnis-angle (> 10°). A wide range of periprosthetic acetabular fractures were observed following primary cementless THA. In total, 71.4% of acetabular fractures were small cracks that did not necessitate revision surgery. By identifying patient-specific risk factors, such as advanced age, women, low BMI, and dysplastic hips, future complications may be reduced.

Deep learning model for malignancy prediction of TI-RADS 4 thyroid nodules with high-risk characteristics using multimodal ultrasound: A multicentre study.

Chu X, Wang T, Chen M, Li J, Wang L, Wang C, Wang H, Wong ST, Chen Y, Li H

pubmed logopapersMay 26 2025
The automatic screening of thyroid nodules using computer-aided diagnosis holds great promise in reducing missed and misdiagnosed cases in clinical practice. However, most current research focuses on single-modal images and does not fully leverage the comprehensive information from multimodal medical images, limiting model performance. To enhance screening accuracy, this study uses a deep learning framework that integrates high-dimensional convolutions of B-mode ultrasound (BMUS) and strain elastography (SE) images to predict the malignancy of TI-RADS 4 thyroid nodules with high-risk features. First, we extract nodule regions from the images and expand the boundary areas. Then, adaptive particle swarm optimization (APSO) and contrast limited adaptive histogram equalization (CLAHE) algorithms are applied to enhance ultrasound image contrast. Finally, deep learning techniques are used to extract and fuse high-dimensional features from both ultrasound modalities to classify benign and malignant thyroid nodules. The proposed model achieved an AUC of 0.937 (95 % CI 0.917-0.949) and 0.927 (95 % CI 0.907-0.948) in the test and external validation sets, respectively, demonstrating strong generalization ability. When compared with the diagnostic performance of three groups of radiologists, the model outperformed them significantly. Meanwhile, with the model's assistance, all three radiologist groups showed improved diagnostic performance. Furthermore, heatmaps generated by the model show a high alignment with radiologists' expertise, further confirming its credibility. The results indicate that our model can assist in clinical thyroid nodule diagnosis, reducing the risk of missed and misdiagnosed diagnoses, particularly for high-risk populations, and holds significant clinical value.

ScanAhead: Simplifying standard plane acquisition of fetal head ultrasound.

Men Q, Zhao H, Drukker L, Papageorghiou AT, Noble JA

pubmed logopapersMay 26 2025
The fetal standard plane acquisition task aims to detect an Ultrasound (US) image characterized by specified anatomical landmarks and appearance for assessing fetal growth. However, in practice, due to variability in human operator skill and possible fetal motion, it can be challenging for a human operator to acquire a satisfactory standard plane. To support a human operator with this task, this paper first describes an approach to automatically predict the fetal head standard plane from a video segment approaching the standard plane. A transformer-based image predictor is proposed to produce a high-quality standard plane by understanding diverse scales of head anatomy within the US video frame. Because of the visual gap between the video frames and standard plane image, the predictor is equipped with an offset adaptor that performs domain adaption to translate the off-plane structures to the anatomies that would usually appear in a standard plane view. To enhance the anatomical details of the predicted US image, the approach is extended by utilizing a second modality, US probe movement, that provides 3D location information. Quantitative and qualitative studies conducted on two different head biometry planes demonstrate that the proposed US image predictor produces clinically plausible standard planes with superior performance to comparative published methods. The results of dual-modality solution show an improved visualization with enhanced anatomical details of the predicted US image. Clinical evaluations are also conducted to demonstrate the consistency between the predicted echo textures and the expected echo patterns seen in a typical real standard plane, which indicates its clinical feasibility for improving the standard plane acquisition process.

[Clinical value of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers].

Fang MJ, Dong D, Tian J

pubmed logopapersMay 25 2025
Peritoneal metastasis is a key factor in the poor prognosis of advanced gastrointestinal cancer patients. Traditional radiological diagnostic faces challenges such as insufficient sensitivity. Through technologies like radiomics and deep learning, artificial intelligence can deeply analyze the tumor heterogeneity and microenvironment features in medical images, revealing markers of peritoneal metastasis and constructing high-precision predictive models. These technologies have demonstrated advantages in tasks such as predicting peritoneal metastasis, assessing the risk of peritoneal recurrence, and identifying small metastatic foci during surgery. This paper summarizes the representative progress and application prospects of medical imaging artificial intelligence in the diagnosis and treatment of peritoneal metastasis, and discusses potential development directions such as multimodal data fusion and large model. The integration of medical imaging artificial intelligence with clinical practice is expected to advance personalized and precision medicine in the diagnosis and treatment of peritoneal metastasis in gastrointestinal cancers.

Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan.

Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N

pubmed logopapersMay 25 2025
To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.

Distinct brain age gradients across the adult lifespan reflect diverse neurobiological hierarchies.

Riccardi N, Teghipco A, Newman-Norlund S, Newman-Norlund R, Rangus I, Rorden C, Fridriksson J, Bonilha L

pubmed logopapersMay 25 2025
'Brain age' is a biological clock typically used to describe brain health with one number, but its relationship with established gradients of cortical organization remains unclear. We address this gap by leveraging a data-driven, region-specific brain age approach in 335 neurologically intact adults, using a convolutional neural network (volBrain) to estimate regional brain ages directly from structural MRI without a predefined set of morphometric properties. Six distinct gradients of brain aging are replicated in two independent cohorts. Spatial patterns of accelerated brain aging in older adults quantitatively align with the archetypal sensorimotor-to-association axis of cortical organization. Other brain aging gradients reflect neurobiological hierarchies such as gene expression and externopyramidization. Participant-level correspondences to brain age gradients are associated with cognitive and sensorimotor performance and explained behavioral variance more effectively than global brain age. These results suggest that regional brain age patterns reflect fundamental principles of cortical organization and behavior.

MobNas ensembled model for breast cancer prediction.

Shahzad T, Saqib SM, Mazhar T, Iqbal M, Almogren A, Ghadi YY, Saeed MM, Hamam H

pubmed logopapersMay 25 2025
Breast cancer poses a real and immense threat to humankind, thus a need to develop a way of diagnosing this devastating disease early, accurately, and in a simpler manner. Thus, while substantial progress has been made in developing machine learning algorithms, deep learning, and transfer learning models, issues with diagnostic accuracy and minimizing diagnostic errors persist. This paper introduces MobNAS, a model that uses MobileNetV2 and NASNetLarge to sort breast cancer images into benign, malignant, or normal classes. The study employs a multi-class classification design and uses a publicly available dataset comprising 1,578 ultrasound images, including 891 benign, 421 malignant, and 266 normal cases. By deploying MobileNetV2, it is easy to work well on devices with less computational capability than is used by NASNetLarge, which enhances its applicability and effectiveness in other tasks. The performance of the proposed MobNAS model was tested on the breast cancer image dataset, and the accuracy level achieved was 97%, the Mean Absolute Error (MAE) was 0.05, and the Matthews Correlation Coefficient (MCC) was 95%. From the findings of this research, it is evident that MobNAS can enhance diagnostic accuracy and reduce existing shortcomings in breast cancer detection.

Sex-related differences and associated transcriptional signatures in the brain ventricular system and cerebrospinal fluid development in full-term neonates.

Sun Y, Fu C, Gu L, Zhao H, Feng Y, Jin C

pubmed logopapersMay 25 2025
The cerebrospinal fluid (CSF) is known to serve as a unique environment for neurodevelopment, with specific proteins secreted by epithelial cells of the choroid plexus (CP) playing crucial roles in cortical development and cell differentiation. Sex-related differences in the brain in early life have been widely identified, but few studies have investigated the neonatal CSF system and associated transcriptional signatures. This study included 75 full-term neonates [44 males and 31 females; gestational age (GA) = 37-42 weeks] without significant MRI abnormalities from the dHCP (developing Human Connectome Project) database. Deep-learning automated segmentation was used to measure various metrics of the brain ventricular system and CSF. Sex-related differences and relationships with postnatal age were analyzed by linear regression. Correlations between the CP and CSF space metrics were also examined. LASSO regression was further applied to identify the key genes contributing to the sex-related CSF system differences by using regional gene expression data from the Allen Human Brain Atlas. Right lateral ventricles [2.42 ± 0.98 vs. 2.04 ± 0.45 cm3 (mean ± standard deviation), p = 0.036] and right CP (0.16 ± 0.07 vs. 0.13 ± 0.04 cm3, p = 0.024) were larger in males, with a stronger volume correlation (male/female correlation coefficients r: 0.798 vs. 0.649, p < 1 × 10<sup>- 4</sup>). No difference was found in total CSF volume, while peripheral CSF (male/female β: 1.218 vs. 1.064) and CP (male/female β: 0.008 vs. 0.005) exhibited relatively faster growth in males. Additionally, the volumes of the lateral ventricular system, third ventricle, peripheral CSF, and total CSF were significantly correlated with their corresponding CP volume (r: 0.362 to 0.799, p < 0.05). DERL2 (Degradation in Endoplasmic Reticulum Protein 2) (r = 0.1319) and MRPL48 (Mitochondrial Large Ribosomal Subunit Protein) (r=-0.0370) were identified as potential key genes associated with sex-related differences in CSF system. Male neonates present larger volumes and faster growth of the right lateral ventricle, likely linked to corresponding CP volume and growth pattern. The downregulation of DERL2 and upregulation of MRPL48 may contribute to these sex-related variations in the CSF system, suggesting a molecular basis for sex-specific brain development.

A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Lei Y, Chao M, Yang K, Gupta V, Yoshida EJ, Wang T, Yang X, Liu T

pubmed logopapersMay 25 2025
High-dose-rate brachytherapy (HDR-BT) is an integral part of treatment for locally advanced cervical cancer, requiring accurate segmentation of the high-risk clinical target volume (HR-CTV) and organs at risk (OARs) on post-applicator CT (pCT) for precise and safe dose delivery. Manual contouring, however, is time-consuming and highly variable, with challenges heightened in cervical HDR-BT due to complex anatomy and low tissue contrast. An effective auto-contouring solution could significantly enhance efficiency, consistency, and accuracy in cervical HDR-BT planning. To develop a machine learning-based approach that improves the accuracy and efficiency of HR-CTV and OAR segmentation on pCT images for cervical HDR-BT. The proposed method employs two sequential deep learning models to segment target and OARs from planning CT data. The intuitive model, a U-Net, initially segments simpler structures such as the bladder and HR-CTV, utilizing shallow features and iodine contrast agents. Building on this, the sophisticated model targets complex structures like the sigmoid, rectum, and bowel, addressing challenges from low contrast, anatomical proximity, and imaging artifacts. This model incorporates spatial information from the intuitive model and uses total variation regularization to improve segmentation smoothness by applying a penalty to changes in gradient. This dual-model approach improves accuracy and consistency in segmenting high-risk clinical target volumes and organs at risk in cervical HDR-BT. To validate the proposed method, 32 cervical cancer patients treated with tandem and ovoid (T&O) HDR brachytherapy (3-5 fractions, 115 CT images) were retrospectively selected. The method's performance was assessed using four-fold cross-validation, comparing segmentation results to manual contours across five metrics: Dice similarity coefficient (DSC), 95% Hausdorff distance (HD<sub>95</sub>), mean surface distance (MSD), center-of-mass distance (CMD), and volume difference (VD). Dosimetric evaluations included D90 for HR-CTV and D2cc for OARs. The proposed method demonstrates high segmentation accuracy for HR-CTV, bladder, and rectum, achieving DSC values of 0.79 ± 0.06, 0.83 ± 0.10, and 0.76 ± 0.15, MSD values of 1.92 ± 0.77 mm, 2.24 ± 1.20 mm, and 4.18 ± 3.74 mm, and absolute VD values of 5.34 ± 4.85 cc, 17.16 ± 17.38 cc, and 18.54 ± 16.83 cc, respectively. Despite challenges in bowel and sigmoid segmentation due to poor soft tissue contrast in CT and variability in manual contouring (ground truth volumes of 128.48 ± 95.9 cc and 51.87 ± 40.67 cc), the method significantly outperforms two state-of-the-art methods on DSC, MSD, and CMD metrics (p-value < 0.05). For HR-CTV, the mean absolute D90 difference was 0.42 ± 1.17 Gy (p-value > 0.05), less than 5% of the prescription dose. Over 75% of cases showed changes within ± 0.5 Gy, and fewer than 10% exceeded ± 1 Gy. The mean and variation in structure volume and D2cc parameters between manual and segmented contours for OARs showed no significant differences (p-value > 0.05), with mean absolute D2cc differences within 0.5 Gy, except for the bladder, which exhibited higher variability (0.97 Gy). Our innovative auto-contouring method showed promising results in segmenting HR-CTV and OARs from pCT, potentially enhancing the efficiency of HDR BT cervical treatment planning. Further validation and clinical implementation are required to fully realize its clinical benefits.
Page 258 of 3093083 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.