Sort by:
Page 190 of 3183175 results

High-Fidelity 3D Imaging of Dental Scenes Using Gaussian Splatting.

Jin CX, Li MX, Yu H, Gao Y, Guo YP, Xia GS, Huang C

pubmed logopapersJun 13 2025
Three-dimensional visualization is increasingly used in dentistry for diagnostics, education, and treatment design. The accurate replication of geometry and color is crucial for these applications. Image-based rendering, which uses 2-dimensional photos to generate photo-realistic 3-dimensional representations, provides an affordable and practical option, aiding both regular and remote health care. This study explores an advanced novel view synthesis (NVS) method called Gaussian splatting (GS), a differentiable image-based rendering approach, to assess its feasibility for dental scene capturing. The rendering quality and resource usage were compared with representative NVS methods. In addition, the linear measurement trueness of extracted craniofacial meshes was evaluated against a commercial facial scanner and 3 smartphone facial scanning apps, while teeth meshes were assessed against 2 intraoral scanners and a desktop scanner. GS-based representation demonstrated superior rendering quality, achieving the highest visual quality, fastest rendering speed, and lowest resource usage. The craniofacial measurements showed similar trueness to commercial facial scanners. The dental measurements had larger deviations than intraoral and desktop scanners did, although all deviations remained within clinically acceptable limits. The GS-based representation shows great potential for developing a convenient and cost-effective method of capturing dental scenes, offering a balance between color fidelity and trueness suitable for clinical applications.

Radiomic Analysis of Molecular Magnetic Resonance Imaging of Aortic Atherosclerosis in Rabbits.

Lee H

pubmed logopapersJun 13 2025
Atherosclerosis involves not only the narrowing of blood vessels and plaque accumulation but also changes in plaque composition and stability, all of which are critical for disease progression. Conventional imaging techniques such as magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) primarily assess luminal narrowing and plaque size, but have limited capability in identifying plaque instability and inflammation within the vascular muscle wall. This study aimed to develop and evaluate a novel imaging approach using ligand-modified nanomagnetic contrast (lmNMC) nanoprobes in combination with molecular magnetic resonance imaging (mMRI) to visualize and quantify vascular inflammation and plaque characteristics in a rabbit model of atherosclerosis. A rabbit model of atherosclerosis was established and underwent mMRI before and after administration of lmNMC nanoprobes. Radiomic features were extracted from segmented images using discrete wavelet transform (DWT) to assess spatial frequency changes and gray-level co-occurrence matrix (GLCM) analysis to evaluate textural properties. Further radiomic analysis was performed using neural network-based regression and clustering, including the application of self-organizing maps (SOMs) to validate the consistency of radiomic pattern between training and testing data. Radiomic analysis revealed significant changes in spatial frequency between pre- and post-contrast images in both the horizontal and vertical directions. GLCM analysis showed an increase in contrast from 0.08463 to 0.1021 and a slight decrease in homogeneity from 0.9593 to 0.9540. Energy values declined from 0.2256 to 0.2019, while correlation increased marginally from 0.9659 to 0.9708. Neural network regression demonstrated strong convergence between target and output coordinates. Additionally, SOM clustering revealed consistent weight locations and neighbor distances across datasets, supporting the reliability of the radiomic validation. The integration of lmNMC nanoprobes with mMRI enables detailed visualization of atherosclerotic plaques and surrounding vascular inflammation in a preclinical model. This method shows promise for enhancing the characterization of unstable plaques and may facilitate early detection of high-risk atherosclerotic lesions, potentially improving diagnostic and therapeutic strategies.

Long-term prognostic value of the CT-derived fractional flow reserve combined with atherosclerotic burden in patients with non-obstructive coronary artery disease.

Wang Z, Li Z, Xu T, Wang M, Xu L, Zeng Y

pubmed logopapersJun 13 2025
The long-term prognostic significance of the coronary computed tomography angiography (CCTA)-derived fractional flow reserve (CT-FFR) for non-obstructive coronary artery disease (CAD) is uncertain. We aimed to investigate the additional prognostic value of CT-FFR beyond CCTA-defined atherosclerotic burden for long-term outcomes. Consecutive patients with suspected stable CAD were candidates for this retrospective cohort study. Deep-learning-based vessel-specific CT-FFR was calculated. All patients enrolled were followed for at least 5 years. The primary outcome was major adverse cardiovascular events (MACE). Predictive abilities for MACE were compared among three models (model 1, constructed using clinical variables; model 2, model 1 + CCTA-derived atherosclerotic burden (Leiden risk score and segment involvement score); and model 3, model 2 + CT-FFR). A total of 1944 patients (median age, 59 (53-65) years; 53.0% men) were included. During a median follow-up time of 73.4 (71.2-79.7) months, 64 patients (3.3%) experienced MACE. In multivariate-adjusted Cox models, CT-FFR ≤ 0.80 (HR: 7.18; 95% CI: 4.25-12.12; p < 0.001) was a robust and independent predictor for MACE. The discriminant ability was higher in model 2 than in model 1 (C-index, 0.76 vs. 0.68; p = 0.001) and was further promoted by adding CT-FFR to model 3 (C-index, 0.83 vs. 0.76; p < 0.001). Integrated discrimination improvement (IDI) was 0.033 (p = 0.022) for model 2 beyond model 1. Of note, compared with model 2, model 3 also exhibited improved discrimination (IDI = 0.056; p < 0.001). In patients with non-obstructive CAD, CT-FFR provides robust and incremental prognostic information for predicting long-term outcomes. The combined model including CT-FFR and CCTA-defined atherosclerotic burden exhibits improved prediction abilities, which is helpful for risk stratification. Question Prognostic significance of the CT-fractional flow reserve (FFR) in non-obstructive coronary artery disease for long-term outcomes merits further investigation. Findings Our data strongly emphasized the independent and additional predictive value of CT-FFR beyond coronary CTA-defined atherosclerotic burden and clinical risk factors. Clinical relevance The new combined predictive model incorporating CT-FFR can be satisfactorily used for risk stratification of patients with non-obstructive coronary artery disease by identifying those who are truly suitable for subsequent high-intensity preventative therapies and extensive follow-up for prognostic reasons.

Quantitative and qualitative assessment of ultra-low-dose paranasal sinus CT using deep learning image reconstruction: a comparison with hybrid iterative reconstruction.

Otgonbaatar C, Lee D, Choi J, Jang H, Shim H, Ryoo I, Jung HN, Suh S

pubmed logopapersJun 13 2025
This study aimed to evaluate the quantitative and qualitative performances of ultra-low-dose computed tomography (CT) with deep learning image reconstruction (DLR) compared with those of hybrid iterative reconstruction (IR) for preoperative paranasal sinus (PNS) imaging. This retrospective analysis included 132 patients who underwent non-contrast ultra-low-dose sinus CT (0.03 mSv). Images were reconstructed using hybrid IR and DLR. Objective image quality metrics, including image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), noise power spectrum (NPS), and no-reference perceptual image sharpness, were assessed. Two board-certified radiologists independently performed subjective image quality evaluations. The ultra-low-dose CT protocol achieved a low radiation dose (effective dose: 0.03 mSv). DLR showed significantly lower image noise (28.62 ± 4.83 Hounsfield units) compared to hybrid IR (140.70 ± 16.04, p < 0.001), with DLR yielding smoother and more uniform images. DLR demonstrated significantly improved SNR (22.47 ± 5.82 vs 9.14 ± 2.45, p < 0.001) and CNR (71.88 ± 14.03 vs 11.81 ± 1.50, p < 0.001). NPS analysis revealed that DLR reduced the noise magnitude and NPS peak values. Additionally, DLR demonstrated significantly sharper images (no-reference perceptual sharpness metric: 0.56 ± 0.04) compared to hybrid IR (0.36 ± 0.01). Radiologists rated DLR as superior in overall image quality, bone structure visualization, and diagnostic confidence compared to hybrid IR at ultra-low-dose CT. DLR significantly outperformed hybrid IR in ultra-low-dose PNS CT by reducing image noise, improving SNR and CNR, enhancing image sharpness, and maintaining critical anatomical visualization, demonstrating its potential for effective preoperative planning with minimal radiation exposure. Question Ultra-low-dose CT for paranasal sinuses is essential for patients requiring repeated scans and functional endoscopic sinus surgery (FESS) planning to reduce cumulative radiation exposure. Findings DLR outperformed hybrid IR in ultra-low-dose paranasal sinus CT. Clinical relevance Ultra-low-dose CT with DLR delivers sufficient image quality for detailed surgical planning, effectively minimizing unnecessary radiation exposure to enhance patient safety.

Uncovering ethical biases in publicly available fetal ultrasound datasets.

Fiorentino MC, Moccia S, Cosmo MD, Frontoni E, Giovanola B, Tiribelli S

pubmed logopapersJun 13 2025
We explore biases present in publicly available fetal ultrasound (US) imaging datasets, currently at the disposal of researchers to train deep learning (DL) algorithms for prenatal diagnostics. As DL increasingly permeates the field of medical imaging, the urgency to critically evaluate the fairness of benchmark public datasets used to train them grows. Our thorough investigation reveals a multifaceted bias problem, encompassing issues such as lack of demographic representativeness, limited diversity in clinical conditions depicted, and variability in US technology used across datasets. We argue that these biases may significantly influence DL model performance, which may lead to inequities in healthcare outcomes. To address these challenges, we recommend a multilayered approach. This includes promoting practices that ensure data inclusivity, such as diversifying data sources and populations, and refining model strategies to better account for population variances. These steps will enhance the trustworthiness of DL algorithms in fetal US analysis.

Prediction of NIHSS Scores and Acute Ischemic Stroke Severity Using a Cross-attention Vision Transformer Model with Multimodal MRI.

Tuxunjiang P, Huang C, Zhou Z, Zhao W, Han B, Tan W, Wang J, Kukun H, Zhao W, Xu R, Aihemaiti A, Subi Y, Zou J, Xie C, Chang Y, Wang Y

pubmed logopapersJun 13 2025
This study aimed to develop and evaluate models for classifying the severity of neurological impairment in acute ischemic stroke (AIS) patients using multimodal MRI data. A retrospective cohort of 1227 AIS patients was collected and categorized into mild (NIHSS<5) and moderate-to-severe (NIHSS≥5) stroke groups based on NIHSS scores. Eight baseline models were constructed for performance comparison, including a clinical model, radiomics models using DWI or multiple MRI sequences, and deep learning (DL) models with varying fusion strategies (early fusion, later fusion, full cross-fusion, and DWI-centered cross-fusion). All DL models were based on the Vision Transformer (ViT) framework. Model performance was evaluated using metrics such as AUC and ACC, and robustness was assessed through subgroup analyses and visualization using Grad-CAM. Among the eight models, the DL model using DWI as the primary sequence with cross-fusion of other MRI sequences (Model 8) achieved the best performance. In the test cohort, Model 8 demonstrated an AUC of 0.914, ACC of 0.830, and high specificity (0.818) and sensitivity (0.853). Subgroup analysis shows that model 8 is robust in most subgroups with no significant prediction difference (p > 0.05), and the AUC value consistently exceeds 0.900. A significant predictive difference was observed in the BMI group (p < 0.001). The results of external validation showed that the AUC values of the model 8 in center 2 and center 3 reached 0.910 and 0.912, respectively. Visualization using Grad-CAM emphasized the infarct core as the most critical region contributing to predictions, with consistent feature attention across DWI, T1WI, T2WI, and FLAIR sequences, further validating the interpretability of the model. A ViT-based DL model with cross-modal fusion strategies provides a non-invasive and efficient tool for classifying AIS severity. Its robust performance across subgroups and interpretability make it a promising tool for personalized management and decision-making in clinical practice.

Does restrictive anorexia nervosa impact brain aging? A machine learning approach to estimate age based on brain structure.

Gupta Y, de la Cruz F, Rieger K, di Giuliano M, Gaser C, Cole J, Breithaupt L, Holsen LM, Eddy KT, Thomas JJ, Cetin-Karayumak S, Kubicki M, Lawson EA, Miller KK, Misra M, Schumann A, Bär KJ

pubmed logopapersJun 13 2025
Anorexia nervosa (AN), a severe eating disorder marked by extreme weight loss and malnutrition, leads to significant alterations in brain structure. This study used machine learning (ML) to estimate brain age from structural MRI scans and investigated brain-predicted age difference (brain-PAD) as a potential biomarker in AN. Structural MRI scans were collected from female participants aged 10-40 years across two institutions (Boston, USA, and Jena, Germany), including acute AN (acAN; n=113), weight-restored AN (wrAN; n=35), and age-matched healthy controls (HC; n=90). The ML model was trained on 3487 healthy female participants (ages 5-45 years) from ten datasets, using 377 neuroanatomical features extracted from T1-weighted MRI scans. The model achieved strong performance with a mean absolute error (MAE) of 1.93 years and a correlation of r = 0.88 in HCs. In acAN patients, brain age was overestimated by an average of +2.25 years, suggesting advanced brain aging. In contrast, wrAN participants showed significantly lower brain-PAD than acAN (+0.26 years, p=0.0026) and did not differ from HC (p=0.98), suggesting normalization of brain age estimates following weight restoration. A significant group-by-age interaction effect on predicted brain age (p<0.001) indicated that brain age deviations were most pronounced in younger acAN participants. Brain-PAD in acAN was significantly negatively associated with BMI (r = -0.291, p<sub>fdr</sub> = 0.005), but not in wrAN or HC groups. Importantly, no significant associations were found between brain-PAD and clinical symptom severity. These findings suggest that acute AN is linked to advanced brain aging during the acute stage, and that may partially normalize following weight recovery.

Prediction of functional outcome after traumatic brain injury: a narrative review.

Iaquaniello C, Scordo E, Robba C

pubmed logopapersJun 13 2025
To synthesize current evidence on prognostic factors, tools, and strategies influencing functional outcomes in patients with traumatic brain injury (TBI), with a focus on the acute and postacute phases of care. Key early predictors such as Glasgow Coma Scale (GCS) scores, pupillary reactivity, and computed tomography (CT) imaging findings remain fundamental in guiding clinical decision-making. Prognostic models like IMPACT and CRASH enhance early risk stratification, while outcome measures such as the Glasgow Outcome Scale-Extended (GOS-E) provide structured long-term assessments. Despite their utility, heterogeneity in assessment approaches and treatment protocols continues to limit consistency in outcome predictions. Recent advancements highlight the value of fluid biomarkers like neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), which offer promising avenues for improved accuracy. Additionally, artificial intelligence models are emerging as powerful tools to integrate complex datasets and refine individualized outcome forecasting. Neurological prognostication after TBI is evolving through the integration of clinical, radiological, molecular, and computational data. Although standardized models and scales remain foundational, emerging technologies and therapies - such as biomarkers, machine learning, and neurostimulants - represent a shift toward more personalized and actionable strategies to optimize recovery and long-term function.

Investigating the Role of Area Deprivation Index in Observed Differences in CT-Based Body Composition by Race.

Chisholm M, Jabal MS, He H, Wang Y, Kalisz K, Lafata KJ, Calabrese E, Bashir MR, Tailor TD, Magudia K

pubmed logopapersJun 13 2025
Differences in CT-based body composition (BC) have been observed by race. We sought to investigate whether indices reporting census block group-level disadvantage, area deprivation index (ADI) and social vulnerability index (SVI), age, sex, and/or clinical factors could explain race-based differences in body composition. The first abdominal CT exams for patients in Durham County at a single institution in 2020 were analyzed using a fully automated and open-source deep learning BC analysis workflow to generate cross-sectional areas for skeletal muscle (SMA), subcutaneous fat (SFA), and visceral fat (VFA). Patient level demographic and clinical data were gathered from the electronic health record. State ADI ranking and SVI values were linked to each patient. Univariable and multivariable models were created to assess the association of demographics, ADI, SVI, and other relevant clinical factors with SMA, SFA, and VFA. 5,311 patients (mean age, 57.4 years; 55.5% female, 46.5% Black; 39.5% White 10.3% Hispanic) were included. At univariable analysis, race, ADI, SVI, sex, BMI, weight, and height were significantly associated with all body compartments (SMA, SFA, and VFA, all p<0.05). At multivariable analyses adjusted for patient characteristics and clinical comorbidities, race remained a significant predictor, whereas ADI did not. SVI was significant in a multivariable model with SMA.

Recent Advances in sMRI and Artificial Intelligence for Presurgical Planning in Focal Cortical Dysplasia: A Systematic Review.

Mahmoudi A, Alizadeh A, Ganji Z, Zare H

pubmed logopapersJun 13 2025
Focal Cortical Dysplasia (FCD) is a leading cause of drug-resistant epilepsy, particularly in children and young adults, necessitating precise presurgical planning. Traditional structural MRI often fails to detect subtle FCD lesions, especially in MRI-negative cases. Recent advancements in Artificial Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), have the potential to enhance FCD detection's sensitivity and specificity. This systematic review, following PRISMA guidelines, searched PubMed, Embase, Scopus, Web of Science, and Science Direct for articles published from 2020 onwards, using keywords related to "Focal Cortical Dysplasia," "MRI," and "Artificial Intelligence/Machine Learning/Deep Learning." Included were original studies employing AI and structural MRI (sMRI) for FCD detection in humans, reporting quantitative performance metrics, and published in English. Data extraction was performed independently by two reviewers, with discrepancies resolved by a third. The included studies demonstrated that AI significantly improved FCD detection, achieving sensitivity up to 97.1% and specificities up to 84.3% across various MRI sequences, including MPRAGE, MP2RAGE, and FLAIR. AI models, particularly deep learning models, matched or surpassed human radiologist performance, with combined AI-human expertise reaching up to 87% detection rates. Among 88 full-text articles reviewed, 27 met inclusion criteria. The studies emphasized the importance of advanced MRI sequences and multimodal MRI for enhanced detection, though model performance varied with FCD type and training datasets. Recent advances in sMRI and AI, especially deep learning, offer substantial potential to improve FCD detection, leading to better presurgical planning and patient outcomes in drug-resistant epilepsy. These methods enable faster, more accurate, and automated FCD detection, potentially enhancing surgical decision-making. Further clinical validation and optimization of AI algorithms across diverse datasets are essential for broader clinical translation.
Page 190 of 3183175 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.