Sort by:
Page 160 of 2052045 results

Highlights of the Society for Cardiovascular Magnetic Resonance (SCMR) 2025 Conference: leading the way to accessible, efficient and sustainable CMR.

Prieto C, Allen BD, Azevedo CF, Lima BB, Lam CZ, Mills R, Huisman M, Gonzales RA, Weingärtner S, Christodoulou AG, Rochitte C, Markl M

pubmed logopapersMay 23 2025
The 28th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance (SCMR) took place from January 29 to February 1, 2025, in Washington, D.C. SCMR 2025 brought together a diverse group of 1714 cardiologists, radiologists, scientists, and technologists from more than 80 countries to discuss emerging trends and the latest developments in cardiovascular magnetic resonance (CMR). The conference centered on the theme "Leading the Way to Accessible, Sustainable, and Efficient CMR," highlighting innovations aimed at making CMR more clinically efficient, widely accessible, and environmentally sustainable. The program featured 728 abstracts and case presentations with an acceptance rate of 86% (728/849), including Early Career Award abstracts, oral abstracts, oral cases and rapid-fire sessions, covering a broad range of CMR topics. It also offered engaging invited lectures across eight main parallel tracks and included four plenary sessions, two gold medalists, and one keynote speaker, with a total of 826 faculty participating. Focused sessions on accessibility, efficiency, and sustainability provided a platform for discussing current challenges and exploring future directions, while the newly introduced CMR Innovations Track showcased innovative session formats and fostered greater collaboration between researchers, clinicians, and industry. For the first time, SCMR 2025 also offered the opportunity for attendees to obtain CMR Level 1 Training Verification, integrated into the program. Additionally, expert case reading sessions and hands-on interactive workshops allowed participants to engage with real-world clinical scenarios and deepen their understanding through practical experience. Key highlights included plenary sessions on a variety of important topics, such as expanding boundaries, health equity, women's cardiovascular disease and a patient-clinician testimonial that emphasized the profound value of patient-centered research and collaboration. The scientific sessions covered a wide range of topics, from clinical applications in cardiomyopathies, congenital heart disease, and vascular imaging to women's heart health and environmental sustainability. Technical topics included novel reconstruction, motion correction, quantitative CMR, contrast agents, novel field strengths, and artificial intelligence applications, among many others. This paper summarizes the key themes and discussions from SCMR 2025, highlighting the collaborative efforts that are driving the future of CMR and underscoring the Society's unwavering commitment to research, education, and clinical excellence.

Automated Detection of Severe Cerebral Edema Using Explainable Deep Transfer Learning after Hypoxic Ischemic Brain Injury.

Wang Z, Kulpanowski AM, Copen WA, Rosenthal ES, Dodelson JA, McCrory DE, Edlow BL, Kimberly WT, Amorim E, Westover M, Ning M, Zabihi M, Schaefer PW, Malhotra R, Giacino JT, Greer DM, Wu O

pubmed logopapersMay 23 2025
Substantial gaps exist in the neuroprognostication of cardiac arrest patients who remain comatose after the restoration of spontaneous circulation. Most studies focus on predicting survival, a measure confounded by the withdrawal of life-sustaining treatment decisions. Severe cerebral edema (SCE) may serve as an objective proximal imaging-based surrogate of neurologic injury. We retrospectively analyzed data from 288 patients to automate SCE detection with machine learning (ML) and to test the hypothesis that the quantitative values produced by these algorithms (ML_SCE) can improve predictions of neurologic outcomes. Ground-truth SCE (GT_SCE) classification was based on radiology reports. The model attained a cross-validated testing accuracy of 87% [95% CI: 84%, 89%] for detecting SCE. Attention maps explaining SCE classification focused on cisternal regions (p<0.05). Multivariable analyses showed that older age (p<0.001), non-shockable initial cardiac rhythm (p=0.004), and greater ML_SCE values (p<0.001) were significant predictors of poor neurologic outcomes, with GT_SCE (p=0.064) as a non-significant covariate. Our results support the feasibility of automated SCE detection. Future prospective studies with standardized neurologic assessments are needed to substantiate the utility of quantitative ML_SCE values to improve neuroprognostication.

Integrating multi-omics data with artificial intelligence to decipher the role of tumor-infiltrating lymphocytes in tumor immunotherapy.

Xie T, Xue H, Huang A, Yan H, Yuan J

pubmed logopapersMay 23 2025
Tumor-infiltrating lymphocytes (TILs) are capable of recognizing tumor antigens, impacting tumor prognosis, predicting the efficacy of neoadjuvant therapies, contributing to the development of new cell-based immunotherapies, studying the tumor immune microenvironment, and identifying novel biomarkers. Traditional methods for evaluating TILs primarily rely on histopathological examination using standard hematoxylin and eosin staining or immunohistochemical staining, with manual cell counting under a microscope. These methods are time-consuming and subject to significant observer variability and error. Recently, artificial intelligence (AI) has rapidly advanced in the field of medical imaging, particularly with deep learning algorithms based on convolutional neural networks. AI has shown promise as a powerful tool for the quantitative evaluation of tumor biomarkers. The advent of AI offers new opportunities for the automated and standardized assessment of TILs. This review provides an overview of the advancements in the application of AI for assessing TILs from multiple perspectives. It specifically focuses on AI-driven approaches for identifying TILs in tumor tissue images, automating TILs quantification, recognizing TILs subpopulations, and analyzing the spatial distribution patterns of TILs. The review aims to elucidate the prognostic value of TILs in various cancers, as well as their predictive capacity for responses to immunotherapy and neoadjuvant therapy. Furthermore, the review explores the integration of AI with other emerging technologies, such as single-cell sequencing, multiplex immunofluorescence, spatial transcriptomics, and multimodal approaches, to enhance the comprehensive study of TILs and further elucidate their clinical utility in tumor treatment and prognosis.

PDS-UKAN: Subdivision hopping connected to the U-KAN network for medical image segmentation.

Deng L, Wang W, Chen S, Yang X, Huang S, Wang J

pubmed logopapersMay 23 2025
Accurate and efficient segmentation of medical images plays a vital role in clinical tasks, such as diagnostic procedures and planning treatments. Traditional U-shaped encoder-decoder architectures, built on convolutional and transformer-based networks, have shown strong performance in medical image processing. However, the simple skip connections commonly used in these networks face limitations, such as insufficient nonlinear modeling capacity, weak global multiscale context modeling, and limited interpretability. To address these challenges, this study proposes the PDS-UKAN network, an innovative subdivision-based U-KAN architecture, designed to improve segmentation accuracy. The PDS-UKAN incorporates a PKAN module-comprising partial convolutions and Kolmogorov - Arnold network layers-into the encoder bottleneck, enhancing the network's nonlinear modeling and interpretability. Additionally, the proposed Dual-Branch Convolutional Boundary Enhancement Module (DBE) focuses on pixel-level boundary refinement, improving edge detail preservation in shallow skip connections. Meanwhile, the Skip Connection Channel Spatial Attention Module (SCCSA) mechanism is applied in the deeper skip connections to strengthen cross-dimensional interactions between channels and spatial features, mitigating the loss of spatial information due to downsampling. Extensive experiments across multiple medical imaging datasets demonstrate that PDS-UKAN consistently achieves superior performance compared to state-of-the-art (SOTA) methods.

Brain age prediction from MRI scans in neurodegenerative diseases.

Papouli A, Cole JH

pubmed logopapersMay 22 2025
This review explores the use of brain age estimation from MRI scans as a biomarker of brain health. With disorders like Alzheimer's and Parkinson's increasing globally, there is an urgent need for early detection tools that can identify at-risk individuals before cognitive symptoms emerge. Brain age offers a noninvasive, quantitative measure of neurobiological ageing, with applications in early diagnosis, disease monitoring, and personalized medicine. Studies show that individuals with Alzheimer's, mild cognitive impairment (MCI), and Parkinson's have older brain ages than their chronological age. Longitudinal research indicates that brain-predicted age difference (brain-PAD) rises with disease progression and often precedes cognitive decline. Advances in deep learning and multimodal imaging have improved the accuracy and interpretability of brain age predictions. Moreover, socioeconomic disparities and environmental factors significantly affect brain aging, highlighting the need for inclusive models. Brain age estimation is a promising biomarker for identify future risk of neurodegenerative disease, monitoring progression, and helping prognosis. Challenges like implementation of standardization, demographic biases, and interpretability remain. Future research should integrate brain age with biomarkers and multimodal imaging to enhance early diagnosis and intervention strategies.

Patient Reactions to Artificial Intelligence-Clinician Discrepancies: Web-Based Randomized Experiment.

Madanay F, O'Donohue LS, Zikmund-Fisher BJ

pubmed logopapersMay 22 2025
As the US Food and Drug Administration (FDA)-approved use of artificial intelligence (AI) for medical imaging rises, radiologists are increasingly integrating AI into their clinical practices. In lung cancer screening, diagnostic AI offers a second set of eyes with the potential to detect cancer earlier than human radiologists. Despite AI's promise, a potential problem with its integration is the erosion of patient confidence in clinician expertise when there is a discrepancy between the radiologist's and the AI's interpretation of the imaging findings. We examined how discrepancies between AI-derived recommendations and radiologists' recommendations affect patients' agreement with radiologists' recommendations and satisfaction with their radiologists. We also analyzed how patients' medical maximizing-minimizing preferences moderate these relationships. We conducted a randomized, between-subjects experiment with 1606 US adult participants. Assuming the role of patients, participants imagined undergoing a low-dose computerized tomography scan for lung cancer screening and receiving results and recommendations from (1) a radiologist only, (2) AI and a radiologist in agreement, (3) a radiologist who recommended more testing than AI (ie, radiologist overcalled AI), or (4) a radiologist who recommended less testing than AI (ie, radiologist undercalled AI). Participants rated the radiologist on three criteria: agreement with the radiologist's recommendation, how likely they would be to recommend the radiologist to family and friends, and how good of a provider they perceived the radiologist to be. We measured medical maximizing-minimizing preferences and categorized participants as maximizers (ie, those who seek aggressive intervention), minimizers (ie, those who prefer no or passive intervention), and neutrals (ie, those in the middle). Participants' agreement with the radiologist's recommendation was significantly lower when the radiologist undercalled AI (mean 4.01, SE 0.07, P<.001) than in the other 3 conditions, with no significant differences among them (radiologist overcalled AI [mean 4.63, SE 0.06], agreed with AI [mean 4.55, SE 0.07], or had no AI [mean 4.57, SE 0.06]). Similarly, participants were least likely to recommend (P<.001) and positively rate (P<.001) the radiologist who undercalled AI, with no significant differences among the other conditions. Maximizers agreed with the radiologist who overcalled AI (β=0.82, SE 0.14; P<.001) and disagreed with the radiologist who undercalled AI (β=-0.47, SE 0.14; P=.001). However, whereas minimizers disagreed with the radiologist who overcalled AI (β=-0.43, SE 0.18, P=.02), they did not significantly agree with the radiologist who undercalled AI (β=0.14, SE 0.17, P=.41). Radiologists who recommend less testing than AI may face decreased patient confidence in their expertise, but they may not face this same penalty for giving more aggressive recommendations than AI. Patients' reactions may depend in part on whether their general preferences to maximize or minimize align with the radiologists' recommendations. Future research should test communication strategies for radiologists' disclosure of AI discrepancies to patients.

A Novel Dynamic Neural Network for Heterogeneity-Aware Structural Brain Network Exploration and Alzheimer's Disease Diagnosis.

Cui W, Leng Y, Peng Y, Bai C, Li L, Jiang X, Yuan G, Zheng J

pubmed logopapersMay 22 2025
Heterogeneity is a fundamental characteristic of brain diseases, distinguished by variability not only in brain atrophy but also in the complexity of neural connectivity and brain networks. However, existing data-driven methods fail to provide a comprehensive analysis of brain heterogeneity. Recently, dynamic neural networks (DNNs) have shown significant advantages in capturing sample-wise heterogeneity. Therefore, in this article, we first propose a novel dynamic heterogeneity-aware network (DHANet) to identify critical heterogeneous brain regions, explore heterogeneous connectivity between them, and construct a heterogeneous-aware structural brain network (HGA-SBN) using structural magnetic resonance imaging (sMRI). Specifically, we develop a 3-D dynamic convmixer to extract abundant heterogeneous features from sMRI first. Subsequently, the critical brain atrophy regions are identified by dynamic prototype learning with embedding the hierarchical brain semantic structure. Finally, we employ a joint dynamic edge-correlation (JDE) modeling approach to construct the heterogeneous connectivity between these regions and analyze the HGA-SBN. To evaluate the effectiveness of the DHANet, we conduct elaborate experiments on three public datasets and the method achieves state-of-the-art (SOTA) performance on two classification tasks.

Cross-Scale Texture Supplementation for Reference-based Medical Image Super-Resolution.

Li Y, Hao W, Zeng H, Wang L, Xu J, Routray S, Jhaveri RH, Gadekallu TR

pubmed logopapersMay 22 2025
Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its resolution is often limited by acquisition time constraints, potentially compromising diagnostic accuracy. Reference-based Image Super-Resolution (RefSR) has shown promising performance in addressing such challenges by leveraging external high-resolution (HR) reference images to enhance the quality of low-resolution (LR) images. The core objective of RefSR is to accurately establish correspondences between the reference HR image and the LR images. In pursuit of this objective, this paper develops a Self-rectified Texture Supplementation network for RefSR (STS-SR) to enhance fine details in MRI images and support the expanding role of autonomous AI in healthcare. Our network comprises a texture-specified selfrectified feature transfer module and a cross-scale texture complementary network. The feature transfer module employs highfrequency filtering to facilitate the network concentrating on fine details. To better exploit the information from both the reference and LR images, our cross-scale texture complementary module incorporates the All-ViT and Swin Transformer layers to achieve feature aggregation at multiple scales, which enables high-quality image enhancement that is critical for autonomous AI systems in healthcare to make accurate decisions. Extensive experiments are performed across various benchmark datasets. The results validate the effectiveness of our method and demonstrate that the method produces state-of-the-art performance as compared to existing approaches. This advancement enables autonomous AI systems to utilize high-quality MRI images for more accurate diagnostics and reliable predictions.

HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading.

Zhang Q, Chuang C, Zhang S, Zhao Z, Wang K, Xu J, Sun J

pubmed logopapersMay 22 2025
Osteoporotic vertebral compression fractures (OVCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, the absence of pre-fracture CT scans and standardized vertebral references leads to measurement errors and inter-observer variability, while irregular compression patterns further challenge the precise grading of fracture severity. While deep learning methods have shown promise in aiding OVCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-OVCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and in-house dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic accuracy in clinical settings and assisting in surgical decision-making.

Influence of content-based image retrieval on the accuracy and inter-reader agreement of usual interstitial pneumonia CT pattern classification.

Park S, Hwang HJ, Yun J, Chae EJ, Choe J, Lee SM, Lee HN, Shin SY, Park H, Jeong H, Kim MJ, Lee JH, Jo KW, Baek S, Seo JB

pubmed logopapersMay 22 2025
To investigate whether a content-based image retrieval (CBIR) of similar chest CT images can help usual interstitial pneumonia (UIP) CT pattern classifications among readers with varying levels of experience. This retrospective study included patients who underwent high-resolution chest CT between 2013 and 2015 for the initial workup for fibrosing interstitial lung disease. UIP classifications were assigned to CT images by three thoracic radiologists, which served as the ground truth. One hundred patients were selected as queries. The CBIR retrieved the top three similar CT images with UIP classifications using a deep learning algorithm. The diagnostic accuracies and inter-reader agreement of nine readers before and after CBIR were evaluated. Of 587 patients (mean age, 63 years; 356 men), 100 query cases (26 UIP patterns, 26 probable UIP patterns, 5 indeterminate for UIP, and 43 alternative diagnoses) were selected. After CBIR, the mean accuracy (61.3% to 67.1%; p = 0.011) and inter-reader agreement (Fleiss Kappa, 0.400 to 0.476; p = 0.003) were slightly improved. The accuracies of the radiologist group for all CT patterns except indeterminate for UIP increased after CBIR; however, they did not reach statistical significance. The resident and pulmonologist groups demonstrated mixed results: accuracy decreased for UIP pattern, increased for alternative diagnosis, and varied for others. CBIR slightly improved diagnostic accuracy and inter-reader agreement in UIP pattern classifications. However, its impact varied depending on the readers' level of experience, suggesting that the current CBIR system may be beneficial when used to complement the interpretations of experienced readers. Question CT pattern classification is important for the standardized assessment and management of idiopathic pulmonary fibrosis, but requires radiologic expertise and shows inter-reader variability. Findings CBIR slightly improved diagnostic accuracy and inter-reader agreement for UIP CT pattern classifications overall. Clinical relevance The proposed CBIR system may guide consistent work-up and treatment strategies by enhancing accuracy and inter-reader agreement in UIP CT pattern classifications by experienced readers whose expertise and experience can effectively interact with CBIR results.
Page 160 of 2052045 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.